收藏 分享(赏)

圆周运动角速度与线速度.doc

上传人:hwpkd79526 文档编号:6528285 上传时间:2019-04-15 格式:DOC 页数:10 大小:257.21KB
下载 相关 举报
圆周运动角速度与线速度.doc_第1页
第1页 / 共10页
圆周运动角速度与线速度.doc_第2页
第2页 / 共10页
圆周运动角速度与线速度.doc_第3页
第3页 / 共10页
圆周运动角速度与线速度.doc_第4页
第4页 / 共10页
圆周运动角速度与线速度.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、圆周运动和向心加速度目标1、理解匀速圆周运动的特点,掌握描述匀速圆周运动快慢的几个物理量:线速度、角速度、周期、转速的定义,理解它们的物理意义并能灵活的运用它们解决问题。2、理解并掌握描写圆周运动的各个物理量之间的关系。3、理解匀速圆周运动的周期性的确切含义。4、理解向心加速度产生的原因和计算方法。重点描述匀速圆周运动快慢的几个物理量:线速度、角速度、周期、转速、向心加速度的定义以及它们的相互关系,是学习的重点。学习难点弄清描写匀速圆周运动的各个物理量之间的关系,理解匀速圆周运动是变速运动且是变加速运动是学习的难点。知识点一:圆周运动的线速度要点诠释:1、线速度的定义:圆周运动中,物体通过的弧

2、长与所用时间的比值,称为圆周运动的线速度。公式: (比值越大,说明线速度越大)方向:沿着圆周上各点的切线方向单位:m/s2、 说明1)线速度是指物体做圆周运动时的瞬时速度。2)线速度的方向就是圆周上某点的切线方向。线速度的大小是 的比值。所以 是矢量。3)匀速圆周运动是一个线速度大小不变的圆周运动。4)线速度的定义式 ,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时线速度。注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。知识点二:描写圆周运动的角速度要点诠释:1、角速度的定义:圆周运动

3、物体与圆心的连线扫过的角度 与所用时间 的比值叫做角速度。公式:单位: (弧度每秒)2、说明:1)这里的 必须是弧度制的角。2)对于匀速圆周运动来说,这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。3)角速度的定义式 ,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时角速度。4)关于 的方向:中学阶段不研究。5)同一个转动的物体上,各点的角速度相等。例如. 木棒 OA 以它上面的一点 O 为轴匀速转动时,它上面的各点与圆心 O 的连线在相等时间内扫过的角度相等。即:3、关于弧度制的介绍(1)角有两种度量单位:角度制和弧度制(2)

4、角度制:将一个圆的周长分为360份,其中的一份对应的圆心角为一度。因此一个周角是360,平角和直角分别是180和90。(3)弧度制:定义半径长的弧所对应的圆心角为一弧度,符号为 rad。一段长为 的圆弧对应的圆心角是rad, (4)特殊角的弧度值:在此定义下,一个周角对应的弧度数是: ;平角和直角分别是 (rad) 。(5)同一个角的角度 和用弧度制度量的 之间的关系是: rad , 说明:在物理学中弧度并没有量纲,因为它是两个长度之比,弧度(rad)只是我们为了表达的方便而 “给”的。知识点三:匀速圆周运动的周期与转速要点诠释:1、周期的定义:做匀速圆周运动的物体运动一周所用的时间叫做周期,

5、单位:s。它描写了圆周运动的重复性。2、周期 T 的意义:不难看到,周期是圆周运动的线速度大小和方向完全恢复初始状态所用的最小时间;周期长说明圆周运动的物体转动得慢,周期短说明转动得快。观察与思考:同学们看一看你所戴的手表或者墙上钟表上的时、分、秒针,它们的周期分别是多少?想一想角速度和周期的关系如何?(秒针的周期最小,其针尖的 最大, 也最大。 )3、匀速圆周运动的转速转速 n:指转动物体单位时间内转过的圈数。单位: r/s(转每秒) ,常用的单位还有 (转每分)关系式: s(n 单位为 r/s)或 s(n 单位为 r/min)注意:转速与角速度单位的区别:知识点四:描述圆周运动快慢的几个物

6、理量的相互关系要点诠释:因为这几个都是描述圆周运动快慢,所以它们之间必然有内在联系1、线速度、角速度和周期的关系匀速圆周运动的线速度和周期的关系匀速圆周运动的角速度和周期的关系匀速圆周运动的角速度和周期有确定的对应关系:角速度与周期成反比。2、线速度、角速度与转速的关系:匀速圆周运动的线速度与转速的关系: (n 的单位是 r/s)匀速圆周运动的角速度与转速的关系: (n 的单位是 r/s)3、线速度和角速度的关系:(1)线速度和角速度关系的推导:特例推导:设物体沿半径为 r 的圆周做匀速圆周运动,在一个时间内转过的弧长2r 及2 角度,则:一般意义上的推导:由线速度的定义: 而 ,所以又因为

7、,所以(2) 线速度和角速度的关系: 可知: ,同理: 一定时 , 一定时(3)对于线速度与角速度关系的理解:是一种瞬时对应关系,即某一时刻的线速度与这一时刻的角速度的关系,适应于匀速圆周运动和变速圆周运动。知识点五:向心加速度要点诠释:1、向心加速度产生的原因:向心加速度由物体所受到的向心力产生,根据牛顿第二定律知道,其大小由向心力的大小和物体的质量决定。2、向心加速度大小的计算方法:(1)由牛顿第二定律计算: ;(2)由运动学公式计算: 如果是匀速圆周运动则有:3、向心加速度 的方向:沿着半径指向圆心,时刻在发生变化,是一个变量。4、向心加速度的意义:在一个半径一定的圆周运动中,向心加速度

8、描述的是线速度方向改变的快慢。5、关于向心加速度的说明(1)从运动学上看:速度方向时刻在发生变化,总是有 必然有向心加速度;(2)从动力学上看:沿着半径方向上指向圆心的合外力必然产生指向圆心的向心加速度。思考回答:为什么匀速圆周运动不是匀变速运动?加速度是个矢量,既有大小又有方向,匀速圆周运动中加速度大小不变,而方向却不断变化。因此,匀速圆周运动不是匀变速运动。规律方法总结1、注意圆周运动的速度和加速度的方向是变化的。(1)圆周运动的线速度的方向时刻在发生变化,但是总是与半径垂直;(2)无论是匀速圆周运动还是变速圆周运动,都是加速度变化的曲线运动,都不是匀变速运动。2、熟练掌握线速度、角速度、

9、周期和转速的关系能给解题带来方便。(1)尽管线速度、角速度、周期和转速都能描写圆周运动的快慢,但是它们是有区别的;(2)线速度与角速度的关系 和 是瞬时对应关系,匀速圆周运动和变速圆周运动都适应;(3)在具体计算中,要注意角的单位和转速的单位。3、同一个转动的物体上不同的点,其角速度是相同的,其线速度与半径成正比;皮带传动时或者齿轮传动时,两个轮子边缘上的点线速度是相同的,其角速度或转速与轮子的半径成反比。4、向心加速度的计算公式 适用于圆周运动任何瞬时的向心加速度的计算,其中的线速度和角速度都是瞬时值,无论是匀速圆周运动还是变速圆周运动都可以用来计算某时刻的向心加速度。典型例题透析类型一角速

10、度和线速度的计算1、闹钟的秒针长4cm,求秒针针尖运动的线速度和角速度。思路点拨:秒针的周期是60s,是一个不言而喻的条件,应自觉的运用。解析:秒针转动的周期 T=60s,又因为 ,故针尖转动一周走过的弧长是2r,所以针尖上一点的线速度也可以用线速度和角速度的关系求解线速度2、 (2010 全国卷)图1是利用激光测转速的原理示意图,图中圆盘可绕固定轴转动,盘边缘侧面上有一小段涂有很薄的反光材料。当盘转到某一位置时,接收器可以接收到反光涂层所反射的激光束,并将所收到的光信号转变成电信号,在示波器显示屏上显示出来(如图2所示) 。 (1)若图2中示波器显示屏横向的每大格(5小格)对应的时间为 ,则

11、圆盘的转速为转/秒。 (保留3位有效数字) (2)若测得圆盘直径为10.20cm,则可求得圆盘侧面反光涂层的长度为cm。 (保留3位有效数字)思路点拨:从题目中提炼出相关条件,是解题的关键:小的矩形虚线的宽度表示反光涂层的运动时间,两个矩形虚线框之间的宽度表示圆盘运动一周的时间。解析:(1)从图2可知圆盘转一圈的时间在横坐标上显示22格,由题意知图2中横坐标上每格表示 ,所以圆盘转动的周期是0.22s,则转速为4.55转/秒。 (2)反光涂层的长度为 。答案:(1)4.55(2)1.46总结升华:如何从题目中挖掘条件是解题的首要任务,也是一种阅读能力,从本题来看,紧密结合图1和图2,对两图中的

12、对应量进行迁移,才会正确解题。同时一定要在平时训练这方面的能力。举一反三【变式1】:电风扇叶片边缘一点的线速度为56.7m/s,若它转动半径为18cm,求电扇转动的角速度和周期。解析:根据线速度与角速度的关系 得【变式2】 (2011 山东聊城模拟)如图所示,用一根长杆和两个定滑轮的组合装置来提升重物 M,长杆的一端放在地上通过铰链联结形成转轴,其端点恰好处于左侧滑轮正下方 O 点处,在杆的中点 C 处拴一细绳,绕过两个滑轮后挂上重物 M. C 点与 O 点距离为,现在杆的另一端用力使其逆时针匀速转动,由竖直位置以角速度 缓缓转至水平位置(转过了90角),此过程中下列说法正确的是( )A重物

13、M 做匀速直线运动 B重物 M 做匀变速直线运动 C重物 M 的最大速度是 LD重物 M 的速度先减小后增大 解析: 由题知, C 点的速度大小为 vC L ,设 vC与绳之间的夹角为 ,把 vC沿绳和垂直绳方向分解可得, v 绳 vCcos ,在转动过程中 先减小到零再增大,故 v 绳 先增大后减小,重物 M 做变加速运动,其最大速度为 L ,C正确类型二向心加速度的计算3、在长 20cm 的细绳的一端系一个小球,绳的另一端固定在水平桌面上,使小球以 5m/s 的速度在桌面上做匀速圆周运动,求小球运动的向心加速度和转动的角速度。解析:由题意可知 根据向心加速度的计算公式4、如图所示,定滑轮的

14、半径 r=2cm,绕在滑轮上的细线悬挂着一个重物,由静止开始释放,测得重物以加速度a2m/s 2 做匀加速运动。在重物由静止下落距离为 1m 的瞬间,滑轮边缘上的点的角速度 多大?向心加速度 a 多大?思路点拨:这是一个关于变速圆周运动向心加速度计算的问题。物体的速度时刻等于轮缘上一点的线速度,求出物体下落 1m 时的瞬时速度,然后利用角速度、向心加速度和线速度的关系可以求解。解析:(1)重物下落 1m 时,瞬时速度为显然,滑轮边缘上每一点的线速度也都是 2m/s,故滑轮转动的角速度,即滑轮边缘上每一点的转动角速度为:(2)向心加速度为:总结升华:此题讨论的是变速运动问题,重物落下的过程中滑轮

15、转动的角速度,轮上各点的线速度都在不断增加,但在任何时刻角速度与线速度的关系 ,向心加速度与角速度、线速度的关系 仍然成立。类型三皮带传动问题5、如图,主动轮 匀速转动,通过皮带不打滑地带动从动轮 O2 转动,已知 分别为r1、r 2 上的中点,A 为 O2 轮边缘上一点,B 为 O1 轮边缘上一点,C 为皮带上一点。试比较:(1)A、B、C 点线速度的大小?(2)A、B、E、F 各点角速度的大小?(3)E、F 点线速度的大小?思路点拨:分析比较各个点运动情况的异同,建立相互关系是解题的切入点。解析:(1)因为皮带传动过程与轮子不打滑,所以 A、B、C 三个点可以看成是皮带上的三个点,相同时间

16、必定通过相同的路程,因此,A、B、C 点的线速度相等,这也是两个轮子的联系。即 (2)比较各点角速度: 比较 应通过 入手分析因为 A、F 是同一物体上的点,角速度必然相等即 ,同理所以(3)由总结升华:(1)同一转动物体上的各点,角速度必然相等;(2)皮带传动时,与皮带接触的点线速度相等。举一反三变式 1、如图所示,一皮带不打滑的皮带传动装置,A、B 两点是轮缘上的点,C 是 O2B 连线中点上的一点。大轮与小轮的半径之比为 2:1,试分析 A、B、C 三点线速度、角速度、周期、向心加速度的关系。解析:A、B、C 三者中,A、B 都是轮边缘上的点,所以具有相同的线速度。v A:vB=1:1。

17、再寻找 vC 与 vA 或 vB 间的关系。由于 C 与 B 在同一个轮子上,所以 C、B 具有相同角速度,根据 v=r 可以确定vB:vC=2:1。因此 vA:vB:vC=2:2:1。再来看看角速度间的关系:B、C 两点在一个轮上,所以它们具有相同的角速度,即 B: C=1:1,而 A、B 两点具有相同的线速度, A: B=2:1, A: B: C=2:1:1。根据角速度与周期的关系,= ,可得到 TA:TB:TC=1:2:2。若从 an= 入手,v A:vB:vC=2:2:1,r A:rB:rC=1:2:1 a n= =4:2:1同理,也可以利用 an= 2r,或 an= r 来找出向心加

18、速度的关系,结果是一样的。更简单的考虑方法是利用 an=wv,因为 w 与 v 的关系已经求出,所以可以直接求出加速度的关系。变式 2、如图所示的皮带传动装置,左边是主动轮,右边是一个轮轴,R A:R C=1:2,R A:R B=2:3。假设在传动过程中皮带不打滑,则皮带轮边缘上的 A、B、C 三点的角速度之比是_;线速度之比是_;向心加速度之比是_。分析:由于 A、C 同轴,所以角速度相等, A: C=1:1由 v=r 有,v A:v C=rA:r C=1:2A、B 用皮带传动,皮带不打滑,所以线速度相等,v A:v B=1:1 A: B=rB:r A=3:2综上:v A:v B:v C=1

19、:1:2; A: B: C=3:2:3;a A:a B:a C=3:2:6变式3:(2011 山东济宁模拟)如图所示,两轮用皮带传动,皮带不打滑,图中有 A、B、C 三点,这三点所在处半径 rArBr C,则这三点的向心加速度 aA、a B、a C的关系是( )Aa Aa Ba CBa CaAaBCa CaA解析: 皮带传动不打滑, A 点与 B 点线速度大小相同,由 得 ,所以 aAaC,所以 aC aA aB,可见选项 C 正确类型四平抛运动和匀速圆周运动综合题6、如图示,在半径为 的水平放置的圆板中心轴上距圆板高为 的 A 处以 沿水平抛出一个小球,此时正在做匀速转动的圆板上的 半径恰好

20、转动到与 平行的位置,要使小球与圆板只碰一次且落点为 B。求:(1)小球抛出的速度 ;(2)圆板转动时的角速度 。思路点拨:思维的切入点是分析小球落在 B 点的条件即:小球平抛落地时的水平位移是 R 且圆盘在这段时间内转动了整数圈。解析:(1) “只碰一次”:若 较小,小球有可能在圆板上弹跳几次后落在 B 点。所以此小球第一次落至圆板上时的 。由平抛运动的规律得(2)因为圆板运动具有周期性,所以小球可在空中运动的时间 t 内,圆盘可能转动了整数圈,设圆板周期为,则 0,1,2,3) 。所以圆盘的角速度 1,2,3)总结升华:解决圆周运动问题要充分注意到其周期性的特点;解决综合性的问题要重视分析

21、物理现象发生的条件。拓展深化:若使小球第一次直接落在过 B 直径的另一端 C 点,解析:平抛运动的水平位移和落地时间 不变,所以(1) 、 (2)方程不变,则 不变, 亦不变。小球落在直径的另一端,圆盘必定转过了整数圈加半圈,所以则 0,1,2,3)总结升华:利用匀速圆周运动的周期性,可分析、解决此类问题的多解性。变式练习变式:雨伞边缘的半径为 r,且高出地面为 h,现将雨伞以角速度 旋转,使雨滴自伞边缘甩出落于地面成为一个大圆,求此大圆的半径 R 是多少?思路点拨:形成雨伞和雨滴运动的情景,画出空间关系图是解题的关键所在。解析:依题意作出俯视图如图,其中小圆是雨伞边缘,半径为 r,大圆是雨滴在地面上的轨迹。两个圆不在同一个水平面上。雨伞以角速度 旋转,所以雨滴离开雨伞边缘时的线速度大小为 v= r,如图中画出了 A 点雨滴甩出时的速度方向,雨滴甩出后以上述速度做平抛运动落到 B 点,A B 为雨滴的水平位移,OA 为伞的半径,则 OB 即为所求大圆的半径。雨滴飞行落地时间 抛射距离

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 户外运动

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报