1、基于人工智能的土地利用适宜性评价模型研究与实现【摘要】:土地是人类赖以生存的基本条件和物质基础。随着人口的增长和经济社会的发展,对土地的需求也在不断增加。在有限的土地资源条件下,如何合理配置人类生产、生活所需用地,保证土地资源的可持续利用,协调人地之间的矛盾,是摆在我们面前的重大课题。土地利用适宜性评价根据特定的用地类型,以土地合理利用为目标,对土地属性进行鉴定,并阐述土地适宜性程度。土地利用适宜性评价是土地规划与决策的重要依据,对土地利用方式的可持续发展与永续利用具有非常重要的意义。但是传统的土地利用适宜性评价工作中,仍然存在评价结果主观性较强,评价过程效率不高,难于做长期的潜在适宜性评价等
2、问题。面对这样的情况,一些人工智能的方法被应用到该领域中了。但是当前使用的人工智能方法相对单一,很多优势性很强的新兴人工智能方法还未得到应有的利用,有必要我们做进一步深入的研究和探讨。本文以常用的层次分析法为起点,指出层次分析法中存在的缺点,并使用敏感性分析来考察其中的不确定性。研究中,还尝试使用新的适宜性规则分类方法来替代层次分析法,从而减少主观指定的因子权重对评价结果的影响。为了实现潜在适宜性评价,本文又尝试用地理模拟系统来揭示某种开发模式下土地利用适宜性的转换规律,为可持续性的土地规划提供更好的依据。本文的主要工作和研究成果包括:一、提出了土地利用适宜性模拟的概念。文中将土地利用适宜性模
3、拟定义为运用地理模拟系统来实现土地利用潜在适宜性评价的方法。利用地理模拟系统能够模拟复杂系统的特点,来支持潜在的土地利用适宜性评价,揭示在特定土地利用方式下适宜性分布形态中的隐含内容,挖掘土地利用适宜性中潜在的规律。二、用元胞自动机机理模拟潜在土地利用适宜性。根据提出的土地利用适宜性模拟概念,设计了基于元胞自动机的适宜性模拟方法,这也是土地适宜性研究领域首次运用元胞自动机理论来实现评价工作。该工作是在三个假定:(a)土地利用适宜性领域效应(b)土地利用开发模式(c)土地适宜性限制性因子,都成立的情况下展开的。基于元胞自动机的潜在土地利用适宜性模拟在一定程度上使预测性土地评价工作更规范化和精确化
4、,使土地利用适宜性评价工作更符合土地利用规划和决策人员的实际要求,为土地可持续利用提供更好的方法措施和技术支持。三、蚁群算法发掘土地利用适宜性分类规则。在获取土地利用适宜性分类规则的方法上,本文创新性的引入了最新的人工仿生学智能理论蚁群算法。该方法避免了层次分析法中权重分配的主观因素,降低了评价过程中权重不确定性的干扰。本文借鉴了基于规则的分类法中对规则的定义,将适宜性规则表达为 IF-THEN 的条件关系的形式,同时把由样本获取的知识信息也通过该形式转换,并输入训练集,供蚁群算法发掘分类规则使用。由蚁群算法中优化路径的机制,抽象出训练数据集中发掘分类规则的数据结构,来发掘规则,进行土地利用适
5、宜性分类,形成评价结果图。四、空间权重敏感性分析。本文的空间权重敏感性分析是运用改进的 OAT(one-at-a-time)方法展开的,由此探究评价结果的稳定性、准则因子的相对权重敏感性,以及如何减低多准则决策方法的不确定性等内容。结果通过表格、图表和专题图的形式表达,能方便明确的找出敏感性高的地理区位。五、土地利用适宜性评价模型工具的开发。本文基于 MicrosoftC#.NET 开发平台、运用 ESRIArcGISEngine 开发组件、MathworksMATLAB 嵌入式开发组件等设计开发了 LSA-GIS 模型工具,并给出了关键的设计流程与示例代码。设计中特别注重了以用户良好感受为中
6、心的交互设计方法,提升用户使用的工作效率。交互设计中贯彻了 UML 统一建模的方法,使设计过程更规范化,为今后的模型工具的功能扩展打下基础。六、研究区灌溉农业用地实例分析。本文选取澳大利亚 MacintyreBrook流域作为研究区,分别用层次分析法、土地利用适宜性分类规则发掘方法和基于元胞自动机的土地利用适宜性模拟方法做了灌溉农地适宜性分析与评价。这三种评价结果根据一定的规则分别进行空间分析对比,得出各种评价方法的可行性、合理性和存在的局限性。实验证明,LSA-GIS 模型工具在研究区的评价工作中取得了良好的效果,同样可以在其他研究区的评价工作中推广使用。 【关键词】:人工智能土地利用元胞自
7、动机蚁群算法潜在适宜性评价交互设计【学位授予单位】:华东师范大学【学位级别】:博士【学位授予年份】:2010【分类号】:TP18;P273【目录】:摘要 6-9Abstract9-12 目录 12-14 第一章绪论 14-361.1土地利用适宜性评价的概念 14-151.2 土地利用适宜性评价的对象和内容 15-161.3 土地利用适宜性评价的分类 16-171.4 土地利用适宜性评价的原则 17-181.5 土地利用适宜性评价体系 18-191.6 国内外研究进展 19-341.7 本文的主要研究内容 34-36 第二章基于层次分析法的土地利用适宜性评价 36-452.1 层次分析法简介 3
8、6-392.2 层次分析法中权重敏感性分析 39-45 第三章利用蚁群算法发掘分类规则的适宜性评价 45-603.1 分类规则发掘 45-463.2 蚁群算法介绍 46-513.3 用于分类规则发掘的蚁群算法 51-60 第四章结合元胞自动机和层次分析法的土地利用适宜性模拟 60-724.1 元胞自动机简介 60-664.2 土地利用适宜性模拟 66-674.3 假定的提出 67-684.4 模型的建立 68-72 第五章土地利用适宜性评价模型工具的设计与实现 72-1015.1 工具设计原则 725.2 需求分析 72-735.3 总体框架设计 73-745.4 空间数据库设计74-755.
9、5 知识库设计 75-765.6 模型实现模块的设计与开发 76-865.7空间信息处理模块设计 86-925.8 交互设计 92-101 第六章土地利用适宜性评价在澳洲灌溉农业中的应用 101-1316.1 研究区介绍 101-1066.2 适宜性等级的划分 1066.3 评价准则因子的选取 106-1076.4 评价单元的划分 107-1086.5 数据获取与处理 108-1116.6 评价模型的应用 111-1256.7 评价结果分析与讨论 125-131 第七章总结与进一步的工作 131-1357.1 总结 131-1347.2 不足与进一步的工作 134-135 附录一 LSA-GIS 软件工具代码示例 135-147 附录二攻读博士学位期间发表的学术论文 147-148 参考文献 148-165 后记 165-167 本论文购买请联系页眉网站。