收藏 分享(赏)

Verilog实现串口通信.doc

上传人:cjc2202537 文档编号:6357968 上传时间:2019-04-09 格式:DOC 页数:8 大小:96.50KB
下载 相关 举报
Verilog实现串口通信.doc_第1页
第1页 / 共8页
Verilog实现串口通信.doc_第2页
第2页 / 共8页
Verilog实现串口通信.doc_第3页
第3页 / 共8页
Verilog实现串口通信.doc_第4页
第4页 / 共8页
Verilog实现串口通信.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、FPGA 实现串行接口 RS232时间:2007-06-29 来源: 作者: 点击:26463 字体大小 :【大 中 小】 -串行接口(RS-232)串行接口是连接 FPGA 和 PC 机的一种简单方式。这个项目向大家展示了如果使用 FPGA 来创建 RS-232 收发器。整个项目包括 5 个部分RS232 是怎样工作的 如何产生需要的波特率 发送模块 接收模块 应用实例 RS-232 接口是怎样工作的作为标准设备,大多数的计算机都有 1 到 2 个 RS-232 串口。特性RS-232 有下列特性 :使用 9 针的“DB-9“插头(旧式计算机使用 25 针的“DB-25“插头). 允许全双工

2、的双向通讯(也就是说计算机可以在接收数据的同时发送数据). 最大可支持的传输速率为 10KBytes/s. DB-9 插头你可能已经在你的计算机背后见到过这种插头它一共有 9 个引脚,但是最重要的 3 个引脚是:引脚 2: RxD (接收数据). 引脚 3: TxD (发送数据). 引脚 5: GND (地). 仅使用 3 跟电缆,你就可以发送和接收数据.串行通讯数据以每次一位的方式传输;每条线用来传输一个方向的数据。由于计算机通常至少需要若干位数据,因此数据在发送之前先“串行化” 。通常是以 8 位数据为 1 组的。 。先发送最低有效位,最后发送最高有效位。异步通讯RS-232 使用异步通讯

3、协议。也就是说数据的传输没有时钟信号。接收端必须有某种方式,使之与接收数据同步。对于 RS-232 来说,是这样处理的 :串行线缆的两端事先约定好串行传输的参数(传输速度、传输格式等) 当没有数据传输的时候,发送端向数据线上发送“1“ 每传输一个字节之前,发送端先发送一个“0“来表示传输已经开始。这样接收端便可以知道有数据到来了。 开始传输后,数据以约定的速度和格式传输,所以接收端可以与之同步 每次传输完成一个字节之后,都在其后发送一个停止位(“1“) 让我们来看看 0x55 是如何传输的:0x55 的二进制表示为:01010101。但是由于先发送的是最低有效位,所以发送序列是这样的: 1-0

4、-1-0-1-0-1-0.下面是另外一个例子 :传输的数据为 0xC4,你能看出来吗?从图中很难看出来所传输的数据,这也说明了事先知道传输的速率对于接收端有多么重要。数据传输可以多快?数据的传输速度是用波特来描述的,亦即每秒钟传输的数据位,例如 1000 波特表示每秒钟传输 100 比特的数据, 或者说每个数据位持续 1 毫秒。波特率不是随意的,必须服从一定的标准,如果希望设计 123456 波特的 RS-232 接口,对不起,你很不幸运,这是不行的。常用的串行传输速率值包括以下几种:1200 波特. 9600 波特. 38400 波特. 115200 波特 (通常情况下是你可以使用的最高速度

5、). 在 115200 波特传输速度下, 每位数据持续 (1/115200) = 8.7s. 如果传输 8 位数据,共持续 8 x 8.7s = 69s。但是每个字节的传输又要求额外的 “开始位”和“ 停止位”,所以实际上需要花费 10 x 8.7s = 87s 的时间。最大的有效数据传输率只能达到 11.5KBytes 每秒。在 115200 波特传输速度下,一些使用了不好的芯片的计算机要求一个长的停止位(1.5 或 2 位数据的长度),这使得最大传输速度降到大约 10.5KBytes 每秒物理层电缆上的信号使用正负电压的机制:“1“ 用 -10V 的电压表示(或者在 -5V 与 -15V

6、之间的电压). “0“ 用 +10V 的电压表示(或者在 5V 与 15V 之间的电压 ). 所以没有数据传输的电缆上的电压应该为-10V 或-5 到-10 之间的某个电压。波特率发生器这里我们使用串行连接的最大速度 115200 波特,其他较慢的波特也很容易由此产生。FPGA 通常运行在远高于 115200Hz 的时钟频率上(对于今天的标准的来说 RS-232 真是太慢了) ,这就意味着我们需要用一个较高的时钟来分频产生尽量接近于 115200Hz 的时钟信号。从 1.8432MHz 的时钟产生通常 RS-232 芯片使用 1.8432MHz 的时钟,以为这个时钟很容易产生标准的波特率,所以

7、我们假设已经拥有了一个这样的时钟源。只需要将 1.8432MHz 16 分频便可得到 115200Hz 的时钟,多方便啊!reg 3:0 BaudDivCnt;always (posedge clk) BaudDivCnt =2000000) printf(“*“); else printf(“ “);acc %= 2000000;这段代码会精确的以平均每 “17.361111111.“ 个时钟间隔打印出一个“*“。为了从 FPGA 得到同样的效果,考虑到串行接口可以容忍一定的波特率误差,所以即使我们使用 17.3 或者 17.4 这样的分频比也是没有关系的。FPGA 波特率发生器我们希望 2

8、000000 是 2 的整数幂,但很可惜,它不是。所以我们改变分频比,“2000000/115200“ 约等于 “1024/59“ = 17.356. 这跟我们要求的分频比很接近,并且使得在 FPGA 上实现起来相当有效。/10 位的累加器 (9:0), 1 位进位输出 (10)reg 10:0 acc; /一共 11 位 !always (posedge clk)acc 5)/(ClkFrequency4);这行程序也使得结果成为整数,从而避免截断。这就是整个的设计方法了。现在我们已经得到了足够精确的波特率,可以继续设计串行接收和发送模块了。RS-232 发送模块下面是我们所想要实现的:它应

9、该能像这样工作:发送器接收 8 位的数据,并将其串行输出。(“TxD_start“置位后开始传输). 当有数传输的时候,使“busy“信号有效,此时“TxD_start”信号被忽略. RS-232 模块的参数是固定的: 8 位数据, 2 个停止位, 无奇偶校验.数据串行化假设我们已经有了一个 115200 波特的“BaudTick“信号.我们需要产生开始位、8 位数据以及停止位。用状态机来实现看起来比较合适。reg 3:0 state;always (posedge clk)case(state)4b0000: if(TxD_start) state = 4b0100;4b0100: if(B

10、audTick) state = 4b1000; / 开始位4b1000: if(BaudTick) state = 4b1001; / bit 04b1001: if(BaudTick) state = 4b1010; / bit 14b1010: if(BaudTick) state = 4b1011; / bit 24b1011: if(BaudTick) state = 4b1100; / bit 34b1100: if(BaudTick) state = 4b1101; / bit 44b1101: if(BaudTick) state = 4b1110; / bit 54b1110

11、: if(BaudTick) state = 4b1111; / bit 64b1111: if(BaudTick) state = 4b0001; / bit 74b0001: if(BaudTick) state = 4b0010; / 停止位 14b0010: if(BaudTick) state = 4b0000; / 停止位 2default: if(BaudTick) state = 4b0000;endcase注意看这个状态机是怎样实现当“TxD_start“有效就开始,但只在“BaudTick“有效的时候才转换状态的。.现在,我们只需要产生“TxD“输出即可.reg muxbi

12、t;always (state2:0)case(state2:0)0: muxbit = TxD_data0;1: muxbit = TxD_data1;2: muxbit = TxD_data2;3: muxbit = TxD_data3;4: muxbit = TxD_data4;5: muxbit = TxD_data5;6: muxbit = TxD_data6;7: muxbit = TxD_data7;endcase/将开始位、数据以及停止位结合起来assign TxD = (state4) | (state3 RS232 接收模块下面是我们想要实现的模块:我们的设计目的是这样的:

13、1.当 RxD 线上有数据时,接收模块负责识别 RxD 线上的数据2.当收到一个字节的数据时,锁存接收到的数据到“data“总线,并使“data_ready“有效一个周期。注意:只有当“data_ready“有效时,“data“ 总线的数据才有效,其他的时间里不要使用“data“ 总线上的数据,因为新的数据可能已经改变了其中的部分数据。过采样异步接收机必须通过一定的机制与接收到的输入信号同步(接收端没有办法得到发送断的时钟) 。这里采用如下办法。1.为了确定新数据的到来,即检测开始位,我们使用几倍于波特率的采样时钟对接收到的信号进行采样。2.一旦检测到“开始位“,再将采样时钟频率降为已知的发送

14、端的波特率。典型的过采样时钟频率为接收到的信号的波特率的 16 倍,这里我们使用 8 倍的采样时钟。当波特率为 115200 时,采样时钟为 921600Hz。假设我们已经有了一个 8 倍于波特率的时钟信号 “Baud8Tick“,其频率为 921600Hz。具体设计首先,接受到的“RxD“ 信号与我们的时钟没有任何关系,所以采用两个 D 触发器对其进行过采样,并且使之我我们的时钟同步。reg 1:0 RxD_sync;always (posedge clk) if(Baud8Tick) RxD_sync = RxD_sync0, RxD;首先我们对接收到的数据进行滤波,这样可以防止毛刺信号被

15、误认为是开始信号。reg 1:0 RxD_cnt;reg RxD_bit;always (posedge clk)if(Baud8Tick)beginif(RxD_sync1 elseif(RxD_sync1 if(RxD_cnt=2b00) RxD_bit = 0;elseif(RxD_cnt=2b11) RxD_bit = 1;end一旦检测到“开始位“ ,使用如下的状态机可以检测出接收到每一位数据。reg 3:0 state;always (posedge clk)if(Baud8Tick)case(state)4b0000: if(RxD_bit) state = 4b1000; /

16、start bit found?4b1000: if(next_bit) state = 4b1001; / bit 04b1001: if(next_bit) state = 4b1010; / bit 14b1010: if(next_bit) state = 4b1011; / bit 24b1011: if(next_bit) state = 4b1100; / bit 34b1100: if(next_bit) state = 4b1101; / bit 44b1101: if(next_bit) state = 4b1110; / bit 54b1110: if(next_bit)

17、 state = 4b1111; / bit 64b1111: if(next_bit) state = 4b0001; / bit 74b0001: if(next_bit) state = 4b0000; / stop bitdefault: state = 4b0000;endcase注意,我们使用了“next_bit“ 来遍历所有数据位。reg 2:0 bit_spacing;always (posedge clk)if(state=0)bit_spacing = 0;elseif(Baud8Tick)bit_spacing = bit_spacing + 1;wire next_bi

18、t = (bit_spacing=7);最后我们使用一个移位寄存器来存储接受到的数据。reg 7:0 RxD_data;always (posedge clk) if(Baud8Tick 怎样使用发送和接收模块这个设计似的我们可以通过计算机的串行口来控制 FPGA 的几个引脚。具体来说,该设计完成以下功能。1. 将 FPGA 的 8 个引脚作为输出(称为“ 通用输出” ) 。 FPGA 收到任何数据时都会更新这 8 个 GPout 的值。2. 将 FPGA 的 8 个引脚作为输入(称为“通用输入 ”) 。FPGA 收到仁厚数据后,都会将 GPin 上的数值通过串行口发送出去。 通用输出可以用来

19、通过计算机远程控制任何东西,例如 FPGA 板上的 LED,甚至可以再添加一个继电器来控制咖啡机。module serialfun(clk, RxD, TxD, GPout, GPin);input clk;input RxD;output TxD;output 7:0 GPout;input 7:0 GPin;/wire RxD_data_ready;wire 7:0 RxD_data;async_receiver deserializer(.clk(clk), .RxD(RxD), .RxD_data_ready(RxD_data_ready), .RxD_data(RxD_data);reg 7:0 GPout;always (posedge clk) if(RxD_data_ready) GPout = RxD_data;/async_transmitter serializer(.clk(clk), .TxD(TxD), .TxD_start(RxD_data_ready), .TxD_data(GPin);endmodule记得包含异步发送和接收模块的设计文件,并更新里面的时钟频率。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 网络科技 > 网络与通信

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报