收藏 分享(赏)

基于pid控制器的两轮自平衡小车设计本科毕业设计.doc

上传人:无敌 文档编号:634248 上传时间:2018-04-16 格式:DOC 页数:32 大小:2.30MB
下载 相关 举报
基于pid控制器的两轮自平衡小车设计本科毕业设计.doc_第1页
第1页 / 共32页
基于pid控制器的两轮自平衡小车设计本科毕业设计.doc_第2页
第2页 / 共32页
基于pid控制器的两轮自平衡小车设计本科毕业设计.doc_第3页
第3页 / 共32页
基于pid控制器的两轮自平衡小车设计本科毕业设计.doc_第4页
第4页 / 共32页
基于pid控制器的两轮自平衡小车设计本科毕业设计.doc_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、本 科 毕 业 设 计基于 PID 控制器的两轮自平衡小车设计摘 要两轮自平衡小车具有体积小、结构简单、运动灵活的特点,适用于狭小和危险的工作空间,在安防和军事上有广泛的应用前景。两轮自平衡小车是一种两轮左右平衡布置的,像传统倒立摆一样,本身是一种自然不稳定体,其动力学方程具有多变量、非线性、强耦合、时变、参数不确定性等特性,需要施加强有力的控制手段才能使其保持平衡。本文在总结和归纳国内外对两轮自平衡小车的研究现状,提出了自己的两轮自平衡小车软硬件设计方案,小车硬件采用陀螺仪和加速度传感器检测车身的重力方向的倾斜角度和车身轮轴方向上的旋转加速度,数据通过控制器处理后,控制电机调整小车状态,使小

2、车保持平衡。由于陀螺仪存在温漂和积分误差,加速度传感器动态响应较慢,不能有效可靠的反应车身的状态,所以软件使用互补滤波算法将陀螺仪和加速度传感器数据融合,结合陀螺仪的快速的动态响应特性和加速度传感器的长时间稳定特性,得到一个优化的角度近似值。文中最后通过实验验证了自平衡小车软硬件控制方案的可行性。关键词:自平衡 互补滤波 数据融合 倒立摆Two-wheeled Self-balancing RobotMa Xuedong(College of Engineering, South China Agricultural University, Guangzhou 510642, China)Ab

3、stract:The two-wheeled self-balancing robot is small in mechanism, with simple structure and can make flexible motion, suitable for narrow and dangerous work space. So it has wide range of applications in security and military. The two-wheeled self-balancing robot is a natural unstable system. The d

4、evice of this system is a parallel arrangement of two single wheels, like a traditional inverted pendulum. Its dynamics are multi-variable, non-linear, serious coupling and uncertain parameters etc. It must be exerted strong control to make it stable.In this paper, studies on two-wheel self-balancin

5、g vehicle at home and abroad are summarized. We designed the hardware and software of our two-wheel self-balancing vehicle. The car using rotational accelerometers, gyroscopes and acceleration sensors to detect body condition and the state in which the pitch change rate. The central processing unit

6、calculate the appropriate data and instructions, and control the motor to achieve the body balancing. Because of gyro drift problems and Integral error with accelerometers and slow dynamic response of acceleration sensors. It cant provide effective or reliable information to reflect the real state o

7、f its body. So we using complementary filter to fuse the data of two sensors, so that the inclination of its body can be approximated better.Finally, we verified the feasibility of the systems hardware and software through experiment.Key Words: Self-Balancing complementary filter Data Fusion Inverte

8、d Pendui目 录1 前言 .11.1 研究意义 .11.2 国内外研究现状 .11.2.1 国外研究成果 .11.2.2 国内研究成果 .11.3 本文的研究内容 .22 两轮平衡车的平衡原理 .22.1 平衡车的机械结构 .22.2 两轮车倾倒原因的受力分析 .32.3 平衡的方法 .33 系统方案分析与选择论证 .43.1 系统方案设计 .43.1.1 主控芯片方案 .43.1.2 姿态检测传感器方案 .43.1.3 电机选择方案 .53.2 系统最终方案 .54 主要芯片介绍和系统模块硬件设计 .64.1 加速度传感器 ADXL345 .64.2 陀螺仪传感器 L3G4200D .

9、84.3 主控 电路 .104.4 电机驱动电路 .114.5 供电电路 .115 系统软件设计 .125.1 系统初始化 .135.2 滤波器 .145.2.1 低通滤波器 .155.2.2 互补滤波器 .155.3 PID 控制器 .17I5.3.1 PID 概述 .175.3.2 数字 PID 算法 .175.3.3 PID 控制器设计 .186 硬件电路 .196.1 硬件制作与调试 .196.2 硬件调试结果 .196.2.1 姿态感知系统测试结果 .196.2.2 PID 控制器测试结果 .207 结论 .21参考文献 .23附录 .24致谢 .26华南农业大学本科生毕业设计成绩评

10、定表01 前言1.1 研究意义应用意义。自平衡车巧妙地利用地心引力使其自身保持平衡,并使得重力本身成为运动动能的提供者,载重越大,行驶动能也就越大,具有环保的特点(胡春亮等,2007)。驾驶者不必担心掌握平衡,车体自身的平衡稳定性,使得原本由于平衡能力障碍而无法骑自行车的人群也同样可以驾驭。车身小巧,转弯灵活,可以在狭窄、大转角的工作场合作业。自平衡车的种种优点使其可以作为一种快速、环保、安全、舒适、小巧灵活的绿色交通工具,是未来汽车和自行车的替代品,其市场的广阔性与经济效益不言而喻。理论研究意义。自平衡车,在重力作用下车体姿态本征不稳定,需要电机的控制来维持姿态的平衡,通过电机驱动转动车轮,

11、传感器、软件、微处理器及车体机械装置整体协调控制电动车平衡,是集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合复杂非线性系统,其控制难度大,控制算法复杂,给控制理论提出了很大的挑战,具有较强的理论研究价值。1.2 国内外研究现状美国、日本、瑞士等国家在研究自平衡车领域起步较早,目前已经达到了先进的水平。国内的一些高校以及科研机构也对其有所研究,并取得了一定的成绩。1.2.1 国外研究成果美国 Lego 公司 Steve Hassenplug 设计了两轮自平衡传感式机器人 Legway。实现了电机差动驱动方式,遥控操作,可以向前,向后和转弯时保持平衡,可以实现 U 型回转和零半径

12、转弯。Legway 是第一个自平衡机器人。采用了模块化的结构设计,安装和拆卸都很方便。日本村田制作所的科学家研发了骑独轮车的机器人“村田顽童” 和“村田婉童”。保持左右平衡通过转动机器人体内配备的惯性轮来实现。瑞士联邦工学院的工业电子实验室为模拟人类行走设计并制造了一个基于倒立摆理论的两轮小车,该小车使用 DSP 控制,车架上方附有重物模拟实际车中的驾驶员,该小车使用陀螺仪和电机编码器得到的信息来稳定系统。11.2.2 国内研究成果哈尔滨工业大学设计的 HITBot 两轮自平衡小车,采用 Accodometry 方法,通过融合码盘和加速度级数据对位置进行估计,有效解决了两轮自平衡小车在运行过程

13、中遇到打滑、越障、碰撞等异常事件而导致的位置估计失败的问题,解决了非系统测程法误差对机器人位置估计的影响,降低了加速度级固有漂移的不利影响,提高了两轮自平衡车的定位精度。深圳职业技术学院等设计的两轮自平衡小车 Opyanbot,应用最优控制与两轮差动等控制方法设计了控制器,提出了针对两轮自平衡机器人平衡和行进的新策略。为了提高两轮自平衡机器人的控制效果,利用基于 DSP 数字电路的全数字智能伺服驱动单元IPM100 分别精确控制左右轮电机,并利用上位机实时控制机器人的运动状态,提高了控制精度、可靠度和集成度,得到了很好的控制效果。1.3 本文的研究内容本文研究内容有两轮自平衡小车的姿态检测算法

14、,PID 控制算法两方面。姿态检测算法通过互补滤波器融合姿态传感器(加速度传感器和陀螺仪传感器)数据,得到小车准确稳定的姿态信息,PID 调节器则利用这些姿态信息,输出电机控制信号,控制电机的转动,使小车得以平衡。2 两轮平衡车的平衡原理2.1 平衡车的机械结构电池层主控层电机驱动层图 1 平衡车机械结构现有的自平衡车结构种类繁多,但都归根于图 1 的基本结构,因此,本设计将使用图 1 的结构,车体由三层组成,从上到下依次是电池层,主控层,电机驱动层,电2池层用于放置给整个系统供电的 6V 锂电池,主控层由主控芯片最小系统和传感器模块组成,电机驱动层接受单片机信号,并控制电机。每个层都是功能模

15、块的电路路板之间用铜柱固定,电机外壳与电机驱动电路板固定,电机转轴与两只轮胎相连。2.2 两轮车倾倒原因的受力分析两轮车是一个高度不稳定系统,在重力作用下车体姿态本征不稳定,致使在没有外加调控下必然倾倒的现象(张三川,2011)。其受力如图 2 所示。mgMlTH图 2 平衡车受力分析图理想状态下,当 M(车体重力)的方向与 H(车轮支持力)的方向相差 180时,系统此时受力平衡,可以达到稳定不倒的状态, 角度为 0。但自然界存在各式各样的干扰, 角度总不为 0,只要产生 角,即使角度很小,M 的方向与 H 的方向亦产生了角度,合力不为 0,根据牛顿运动定律可知, 角度将越来越大,直至车体倾倒

16、在地上。2.3 平衡的方法从以上分析可得,导致车体倾倒的最大因素是 角度的产生,因此,欲使小车平衡,需要消除 或者将 角度控制在一个足够小的范围内。其整体控制环路图 3 所示。 = 0车体平衡 变小 不为零车体倾斜转动车轮图 3 小车平衡原理流程图3消除 角度的有效方法,是通过电机的转动,带动车体下部的移动,以保持与车体上部在一水平垂直线上。3 系统方案分析与选择论证3.1 系统方案设计3.1.1 主控芯片方案方案一:采用意法半导体(ST)公司的 STM32 单片机作为主控芯片。此芯片是以ARM 的 Cortex-M 系列为内核的单片机,相对其他单片机,外设丰富,主频高,价格便宜,有专门的软件

17、库,操作简单,调试方便,低功耗。强型系列时钟频率达到72MHz,是同类产品中性能最高的产品;基本型时钟频率为 36MHz,以 16 位产品的价格得到比 16 位产品大幅提升的性能,是 16 位产品用户的最佳选择。方案二:采用 ATMEL 公司的 AVR 单片机 AVR 单片机硬件结构采取 8 位机与 16位机的折中策略,即采用局部寄存器存堆(32 个寄存器文件 )和单体高速输入/输出的方案(即输入捕获寄存器、输出比 较匹配寄存器及相应控制逻辑) 。提高了指令执行速度(1Mips/MHz),克服了瓶颈现象,增强了功能。其中的一款单片机型号为 Atmega128,有 64 个引脚,最高可达到 16

18、M 主频,IIC,UART,SPI 接口都比较丰富,但价格高。方案三:采用宏晶科技有限公司的 STC12C5A60S2 增强型 51 单片机作为主控芯片。此芯片内置 ADC(模数转换)和 IIC 总线接口,且内部时钟不分频,可达到1MPS。性价比低。考虑到此系统的复杂度,需要与传感器进行 IIC 通讯,输出灵活可控制的 PWM信号,以及进行大量的数学运算。从性能和价格上综合考虑选择方案一,即用 STM32作为本系统的主控芯片,由于外设比较简单,只需要 IIC 和 PWM 通道,因此具体型号定位为 STM32RBT6。3.1.2 姿态检测传感器方案方案一:使用加速度传感器进行倾角。重力加速度传感

19、器(g-sensor)能过输出以其芯片为中心的三轴加速度,通过这三个轴的重力加速度便可以计算出芯片的倾角,即车体的倾角。该方案的优点是重力加速度的静态性能很好,在车体静态下能测出准确4稳定的倾角,而在动态下,三轴加速度各轴会受到其它加速度的影响,导致其数据并不稳定可靠。方案二:使用陀螺仪传感器进行测量。陀螺仪传感器能输出围绕以芯片为中心的三个轴的角速度,通过读角速度的积分,即可得出倾角。该方案的优点是陀螺仪的动态性能很好,在动态下测出的角速度没有太多的混杂成分,缺点是陀螺仪具有静态漂移,即静态下,陀螺仪仍然会输出数值,而积分却一直在进行,因此静态时,测出来的角度并不是 0。方案三:加速度传感器

20、与陀螺仪传感器结合,通过融合算法,提取出加速度传感器的静态效果和陀螺仪的动态效果。优点是能测出准确稳定的倾角,但融合算法比较复杂。综上考虑,由于准确稳定的倾角正是本文要讨论的话题,因此最终选择方案三,即加速度传感器与陀螺仪传感器数据融合测量倾角。并为了简化电路,最终选择了均为 IIC 接口的陀螺仪传感器 L3G4200 和加速度传感器 ADXL345。3.1.3 电机选择方案方案一:步进电机。步进电机的选择角度正比于脉冲数,有较宽的调速范围,可以采用开环方式控制;步进电机有较大的输出转矩;有优秀的起制动性能;控制精度较高,误差不会累积。但是步进电机步距角固定,分辨率缺乏灵活性,而且步进驱动时容

21、易造成车体震荡,不利于小车的稳定。步进电机虽然可以使用细分驱动方式克服上述缺点,但是细分驱动电路结构复杂,而且功耗增大不适合用于电池供电的应用上。方案二:直流无刷电机。直流无刷电机具有直流有刷电机机械特性好、调速范围宽等优点,而且无刷电机没有换向器和电刷,可靠性高,寿命长。但是无刷电机的驱动电路复杂,而且在本设计中小车为实验性质,车身较小,市面上很难找到大小合适的直流无刷电机。方案三:直流有刷电机。直流有刷电机具有机械特性硬,响应速度快,调速范围宽的特点,满足两轮自平衡小车对灵敏性、快速性等要求,虽然电机的电刷会是电机的寿命缩短,还会引发电磁干扰。但是由于本设计负载较轻,换向器和电刷的损耗较低。小车采用多层机械结构,电机驱动电路与其他电路分离,有效降低电磁干扰。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 学术论文 > 管理论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报