收藏 分享(赏)

西安市昆仑中学2014届高考数学一轮复习讲义 第20课时 导数的应用 理.doc

上传人:天天快乐 文档编号:629449 上传时间:2018-04-15 格式:DOC 页数:11 大小:2.38MB
下载 相关 举报
西安市昆仑中学2014届高考数学一轮复习讲义 第20课时 导数的应用 理.doc_第1页
第1页 / 共11页
西安市昆仑中学2014届高考数学一轮复习讲义 第20课时 导数的应用 理.doc_第2页
第2页 / 共11页
西安市昆仑中学2014届高考数学一轮复习讲义 第20课时 导数的应用 理.doc_第3页
第3页 / 共11页
西安市昆仑中学2014届高考数学一轮复习讲义 第20课时 导数的应用 理.doc_第4页
第4页 / 共11页
西安市昆仑中学2014届高考数学一轮复习讲义 第20课时 导数的应用 理.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、 135课题:导数的应用考纲要求:理解可导函数的单调性与其导数的关系;1.了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);2会求一些实际问题(一般指单峰函数)的最大值和最小值.3教材复习利用导数研究多项式函数单调性的一般步骤:求 ; 确定 在 内符号; 若 在 上恒成立,则1()fx2()fx,ab3()0fx,ab在 上是增函数;若 在 上恒成立,则 在 上是减函数 头htp:/w.xjkygcom126t:/.j,ab0f,()f, 为增函数( 为减函数).0()x 在区间 上是增函数 在 上恒成立;()f,f,在区间 上为减函数 在 上恒成立.x极大值: 一般地,

2、设函数 在点 附近有定义,如果对 附近的所有的点,都有2. ()f00x,就说 是函数 的一个极大值,记作 极大值 , 是极0()f0fxxy0()fx大值点.极小值:一般地,设函数 在 附近有定义,如果对 附近的所有的点,都有3()00就说 是函数 的一个极小值,记作 极小值 , 是极小0()fx0ff 0()f值点.极大值与极小值统称为极值 奎 屯王 新 敞新 疆4在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值 奎 屯王 新 敞新 疆 请注意以下几点:( )极值是一个局部概念 奎 屯王 新 敞新 疆 由定义,极值只是某个点的函数值与它附近点的函数值比1较是最大或最小

3、.并不意味着它在函数的整个的定义域内最大或最小.( )函数的极值不是唯一的 奎 屯王 新 敞新 疆 即一个函数在某区间上或定义域内极 xs 大值或极小值2可以不止一个.( )极大值与极小值之间无确定的大小关系 奎 屯王 新 敞新 疆 即一个函数的极大值未必大于极小值,3如下图所示, 是极大值点, 是极小值点,而 .1x4x)(4xf1f( )函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 奎 屯王 新 敞新 疆 而使函数取4得最大值、最小值的点可能在区间的内部,也可能在区间的端点.求可导函数 的极值的步骤:5()f确定函数的定义区间,求导数 ; 求方程 的根 奎 屯王 新 敞新 疆

4、 ;1)(xf2()0fx用函数的导数为 的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检30查 在方程根左右的值的符号,如果“左正右负” ,那么 在这个根处取得极大)(xf值;如果“左负右正” ,那么 在这个根处取得极小值;如果“左右不改变符号” ,那()f么 在这个根处无极值.函数的最大值和最小值: 一般地,在闭区间 上连续的函数 在 上必有最6 ba, )(xfba,大值与最小值说明: 在开区间 内连续的函数 不一定有最大值与最小值如函数1(,)ab)(xf136在 内连续,但没有最大值与最小值;xf1)(),0(函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值

5、点附2近函数值得出的函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止3一个,也可能没有一个.利用导数求函数的最值步骤:7由上面函数 的图象可以看出,只要把连续函数所有的极值与定义区间端点的)(xf函数值进行比较,就可以得出函数的最值了设函数 在 上连续,在 内可导,则求 在 上的最大值与最fba,(,)ab)(xfba,小值的步骤如下: 求 在 内的极值;1)(xf将 的各极值与 、 比较得出函数 在 上的最值 奎 屯王 新 敞新 疆2)(xf ff,题型一 利用导数研究函数的单调性典例分析:问题 1 ( 届云南平远一中五模)函数 在定义域 内可导,其图象08)(xfy)3

6、,2(如图所示,记 的导函数为 ,则不等式 的解集为)(xfy)(f0.A3,2B841,.C,2.D3,84,1,3( 江西)对于 上可导的任意函数 ,若满足 ,则必有06R()fx1()xf0.A()2ff.B02 Cf1D137( 重庆)设函数 ()fx在 上可导,其导函数为 ()fx,且函数3201R()yxf的图像如图所示,则下列结论中一定 成立的是函数 有极大值 2和极小值 (1)f .A函数 有极大值 ()f和极小值 B函数 ()f有极大值 和极小值 2 C函数 x有极大值 和极小值 ()f.D设函数 , 在 上均可导,且 ,则当 时,有4()fxg,ab()fxgaxb.A.B

7、.C()fD()bf( 大连一模)设 均是定义在 上的奇函数,当 时,50(),fxgR0x()fxg,且 ,则不等式 的解集是()fxg20()fxg.A2,.B,.C,2,.D,2,138( 大纲)若函数 在 是增函数,则 的取值范围是6201321=fxax,+2a.A-,.B1,).C0,3.D3,)( 浙江文)已知函数 70932()1fxaxxb,aR若函数 的图象过原点,且在原点处的切线斜率是 3,求 的值;1()fx若函数 在区间 上不单调,求 的取值范围21,题型二 利用导数研究函数的极值和最值139问题 2 ( 湖北文)已知函数 有两个极值点,则实数103()lnfxaxa

8、的取值范围是 .A,.B10,2.C0,1.D0,( 浙江)已知 为自然对数的底数,设函数 ,2013e )2,1()1()kxexf则当 时, 在 处取得极小值 当 时, 在 处取得极大值 .Ak)(xf1.Bk当 时, 在 处取得极小值 当 时, 在 处取得极大CD2)(f值 ( 天津)已知函数 ,其中 30721()axf()Ra()当 时,求曲线 在点 处的切线方程;1ayf,()当 时,求函数 的单调区间与极值()f问题 3求函数 在区间 上的最大值和最小值.21()ln4fxx0,140题型三 导数的综合应用利用导数证明不等式问题 4已知 ,函数 .mR2()xfxme若函数没有零

9、点,求实数 的取值范围;1当 时,求证: .20f23问题 5 ( 北京)设 为曲线 : 在点 处的切线.2013LClnxy1,0求 的方程; 证明:除切点 之外,曲线 在直线 的下方.L1,0CL利用导数研究方程的解或函数的零点或图像的交点问题141-2 2xyO 1-1-11问题 6已知 , 在区间 上有两个不同的交点,2()fxaR()2lngx2,e求 的范围.a课后练习作业:已知函数 ,则方程 在区间 上的根有1.432()10fxx()0fx1,2个 个 个 个A3.B.C1.D( 长安一中二模)设直线 与函数 , 的图像分别交于2.013xt2()fx()lngx点 ,则当 达

10、到最小值时的值为 ,MN.A1.B.C2.D5已知函数 的图象如右图所示3.()yxf(其中 是函数 的导函数),)f下面四个图象中 的图象大致是 O -2 2 x y 1 -1 -21 2 O x y -2 -2 2 1 -1 1 2 O-2 4 xy 1 -1 -2 1 2 O -2 2 x y -1 2 4 A B C D 142( 天津)函数 的定义域是开区间 ,4.06()fxab导函数 在 内的图象如图所示,则函数()fx,ab在开区间内有极小值点个 个 个 个.A1.B2.C3.D4( 届高三陕师大附中八模)如果 是二次函数, 且 的图象开口向上,5.07()fx ()fx顶点坐

11、标为 , 那么曲线 上任一点的切线的倾斜角 的取值范围是(13)y.A2(,.B20,.C20,3.D2,3( 届厦门双十中学高三月考)如图,是函数6.08的大致图像,则 等于 dcxbxf23)( 21x.A9.B10.C96.D8已知 在 上是减函数,求 的取值范围.7. 13)(2xaxf Ra1,3,5xybfO143求证:方程 有且只有一个根.8.1sin2x已知: ,证明不等式:9.1xln1x( 届高三福建质检)已知函数 在 处取得极10.82()lnfxax0值 求实数 的值; 若关于 的方程 在区间 上恰有两个a25b,2不同的实数根,求实数 的取值范围; 证明:对任意的正整数 ,不等式b3n都成立21ln144走向高考:( 安徽)函数 cosinyxx的图象大致为1.203( 辽宁)设函数 满足 , ,则 时,2.013fx2xefxf28ef0x有极大值,无极小值 有极小值,无极大值 fx.A.B既有极大值又有极小值 既无极大值也无极小值CD( 湖北)若 ,则 与 的大小关系 3.052xx3sin与 的取值有关Axsin2.Bsi.Cx2.D( 陕西) 是定义在 上的非负可导函数,且满足 4.07()fx(0), ()xff0对任意正数 ,若 ,则必有ab,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报