收藏 分享(赏)

粗糙集数据分析系统MATLAB仿真工具箱设计.pdf

上传人:HR专家 文档编号:6267926 上传时间:2019-04-03 格式:PDF 页数:4 大小:202.42KB
下载 相关 举报
粗糙集数据分析系统MATLAB仿真工具箱设计.pdf_第1页
第1页 / 共4页
粗糙集数据分析系统MATLAB仿真工具箱设计.pdf_第2页
第2页 / 共4页
粗糙集数据分析系统MATLAB仿真工具箱设计.pdf_第3页
第3页 / 共4页
粗糙集数据分析系统MATLAB仿真工具箱设计.pdf_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 l : 2005- 12-29 “:SE1 S “( 60574011) #Te:f( 1966- ) , 3, a + ,v q,p V 3;f i 2( 1956- ) , 3, a g ,v q,p V3 =#第28卷第1期2007年 1月东 北 大 学 学 报 ( 自 然 科 学 版 )Journal of Northeastern University( Natural Science)Vol128, No. 1Jan. 2 00 7Y“ s“dMATLAB_ Q !9张雪峰, 张庆灵(v , a + 110004)K 1: V us1“M u Q,YV MWG ,4 Y“ s E

2、,YV1 e “,4K eT# MAT LAB) “f , p |Ma (/) aN1“aM1a MeaSMeaKl %?5 E LC# LC MATLAB_ Q !9# m (GUI)ZE, !9 z -“d #K L= 0T,wY“ 8 Ll #, L=il#1 o M:Y“; e; ;MATLAB;_; Qms |: TP 393.09 DS M : A cI|: 1005-3026( 2007) 01-0040-04Design of MATLAB Simulation Tool Box for Rough Set DataAnalysis SystemZHANG Xue-feng,

3、ZHANG Qing-ling(School of Sciences, Northeastern University, Shenyang 110004, China. Correspondent: ZHANG Qing-ling,professor, E-mail: qlzhang )Abstract: The two kernel concepts, indiscernibility relation and relative positive region, arefocused on. An algorithm is proposed to analyze the rough set

4、data analysis system, according tothe mutual dependency between different kinds of knowledge. The numbers of reduced attributesare compared to pick out a reduction result involving the minimum number of attributes. Takingthe advantage of MATLAB in dealing with set functions, the program realizations

5、 of manyalgorithms are given to solve relative core, upper approximation, lower approximation,equivalence relation, relative significance level, relative reduction of attributes, relative reductionof domain and minimal decision rules, thus designing the MATLAB simulation tool. By way ofgraphical use

6、r interface(GUI), the favorable main interface of man-machine interaction system isdesigned. An example resulting from running is given, which shows the practical significance tothe applications of rough set theory.Key words: rough set; attributes reduction; attribute core; MATLAB; simulation; tool

7、box“9,s 1p9 , 1V | .G # ?Vv Z4G E 4 N L= (B ,)“dA 1#Y“(Rough Set,eRS) o EZ. Pawlak1982 M4 1#1991 MPawlak , $ 2 #1997 MZ. Pawlak Y“ZE M % 3 # RS= E+ M?Z N, |T 7 “# B -o 9 ZE#Y“ZE MVr Mw 15 qsa f a Vs M1+ M4, VVC ? Mee,) a aca!aB M4 B ZE# !a M a9 aE e“d1 $#MATLAB -K a ? vrq 9 V j S/ qIB#5MATLAB 9 ?, M

8、ATLABKV710 Y“Z f Q# I nMATLAB C) “a # 1“f # d+, I nY“) “N1“+, MATLAB 7?Y“ s“d_ Q ?=1 , 1VC+ 9 YrT#Y“ s) qn,SROSETTA, ROSE,t qN, ?B,r q,S = # Y“ W 8 Ll, C E, 7?BY“ s“d v L=il 4#1 Y“eY“ M Tl, M) 4 B* s #Y“ VV ?C c M, U .? p# !X, YI U,R lU N1“,“X1R/ :R- (X)= G Y I U/ R: Y AX#R- (X) C M XFKv“, u,:POS(X)

9、# : R- (X)= G Y I U/ R: Y HX X #R- (X) “XMd bN i“, *t V ? XFKl“#“H ul:Bnd(X)= R- (X)- R- (X)#TBnd(X) b“,5X1R b ;Q,5X1RY“5#B“dS VV U: S = 3U, A,V,f4, , U “, ; A “; T “A VsHq “C % “D,CGD= A,CHD= ,5“d %“d %V# V1 U, U7 ,B Hq , % #V1 B“d L Table 1 An example of information systemU C1 C2 C3 C4 D1 1 0 0 1

10、12 1 0 0 0 13 0 0 0 0 04 1 1 0 1 05 1 1 0 2 26 2 1 0 2 27 2 2 2 2 2“d, 0“R AA,VsO1“IND(R):IND(R)= (x,y) I U U: r I R, r( x)=r(y),A IND(R) BN1“,x“R N xIND(R)lxIND( R) = y:y I U,yIND(R)x #eL n, 3j f /R9IND(R)#LRV UB1“,R Us ,UWN1“ H,U/ R= X1,X 2, , XnV U 1“R, U N B,1U M#e “ds %? MHq/, “ # TIND(R)= IND(

11、 R- r),rR V 8 # %Ve “ K HqOY B % ,| %Vc % Me#e %VHq e, T Hq %V x,5 , V #“dS, P,Q AA,5QPuPOSP(Q)lPOSP(Q) = G P- (X),X I U/Q #R V 1“, “R“,:CORE( R)6#2 RSDA“d LCY“ ZE“d4 s ? $, 1 X s ? M -4/,YV Me,w5 %s ?5#Y“ Q YVN1“ l,Y“ Q 4 , #yNY Y“w4, RS 8Armd #Y“ s( rough set dataanalysis, RSDA) Bs WM1GB|ZE# RSDA

12、VV 4 |?5as1o ,V7 %# 1S L !,?5 3 z#Y“ sZE L= %VeV,)V1f /#2.1 MATLAB“f MATLAB70 Q , sa ama )41第1期 张雪峰等: 粗糙集数据分析系统MATLAB仿真工具箱设计a|) am) alosa Z ea“dO MadL ea a * a ad9s# ? v O W,F 7? v S Q, PMATLAB s j,S= eW PB#MATLAB vf o,/ 7? P #1f 7cl #V2 MATLABs“f Table 2 Part of MATLAB set functionsf ? cat( d,A,B)

13、FAB d sort(A)| FA 6 intersect( a,b)Rab , _ 6 ismember(a,S)RB_ a“_, a “S setdiff( a,b)Rab ,_ 6 unique(a)R_ a ,Cstrvcat( t1,t2,t3, ,)31t1, t2, t3, ,_Funion( a,b)Rab, _ 6 setxor( a,b)“s 2.2 1MATLABRough“ Q9 VsO1“$,YV “/ “,“ l#YRough“ 4#Y“t Qa 4 ,E #?Z,+Y 5L= “#_/ TB V4 7?“dr q, MATLAB v s) V j q P S 7?

14、 n ,Y“ QZE MATLABf LC ?_,/ 1MATLAB#(1)f w= Rsupper(y, a, x) p | %Vxy“,1a VsO1“ “#/xM V1 , /:function w= Rsupper(y,a,x)z= ind( a,x); w = ; p,q = size(z);for u= 1:pzz= setdiff( z(u,:),0);zzz= intersect(zz,y);zp, zq= size(zzz);if zq = 0, w = cat(2, w,zz);endend w = sort( w,2) ; , |a= 4,y= 1 2 4 5#Tm y

15、= Rsupper(y,a,x) = 1 2 3 4 5 6 7 #(2)f w = Rslower(y, a, x) p | %Vx“y,1a VsO1“/ “#(1)/L3/ B9MRslower(y, a,x)#if ismember( zz,y), w= cat(2, w, zz); end, , a,y , 74 U/,my= Rlower(y,a,x)= 1 4#(3)f y= ind(a,x) p | %Vx a VsO1“# p VsO1“KO(| A | | U| 2),yK f /1 “ Q, BQ, N BQ# E: n5 “I ,I , BR V,O(| A | | U

16、| lg| U| )#1 :function y= ind( a,x)p, q = size(x); ap,aq = size( a);y= x;for i= 1:p, v(i)= code( aq,y(i,:),10); endy= v. ; yy,I = sort(y); y= yy I;b,k,l = unique(yy); y= lI; m= max(l);aa= zeros( m,p);for ii= 1: m for j= 1:pif l(j)= = ii, aa(ii,j)= I(j); endend end y= aa;function yy= code(a,x,b)yy= 0

17、; for i= 1:a, yy= yy+ x(i)* b(a- i); |a= 5,m y= ind(a, x)= 3,4,1,2,5, 6,7#(4)f y,b= pos(p,q) p | %VxH,QP,y | POSP(Q)| /| U|, bQP“# , |a= 1:4,b= 5,my, b= pos(ind( a,x), ind(b,x),y= 1,b= 1 2 3 4 5 6 7#(5)f y= redu( c, d,x) p | %VxHq c % d e# ,V1 U“d, |c= 1: 4,d= 5,my= redu( c,d,x)= 1 2 4#(6)f y= core(

18、 c,d, x) p | %VxHq c % d # c,d,x ,Tm y= core( c, d, x)= 1 24#f pos(p, q),redu(c,d, x)core(c, d,x) 8 EnD7#6,9BtV 4Rough“ ,$4 42 东北大学学报(自然科学版) 第28卷MRough“ 4#4M ZY“ ,1 EFM VZL LCMZ E 8- 9#3 m MATLAB+Y“_vvh IT ,B q , = ?% B,“N,m 9 %“ qQ#MATLABm P“d Q4, a Ma 1f Y?5#9 VYViworkspaceq s) # !9 MATLABGUIDE ?#

19、RSDA“d 1 = eqf , f ,I ?s Y“f m1 ,/ eqBrowse ,f Callback #Function browse- Callback ( hObject, eventdata,handles)filename, pathname, filterindex = uigetfile (c * .txtc,cu 7c,cD: MATLAB6p5 WORK A. TXTc) ;set( handles. readx,cstringc,pathname, filename )MATLAB4 U/o rsdav3 75 m1 U_ Q , V Browse f V,M Hq

20、 C % D |,#) A,R, Y“ = ,5 VBs# , redu5 Ve,T|results output A U #m1 Y“_ Q Fig.1 Main interface of rough set simulation tool box4 MATLAB“f #m 7? !9Y“_ QZE#|MATLABY“ , LC Y“5“d !9r_# e, #Y“ ,wY“ L=B4rT AT#ZE 8 L VnD10#qI KKl) , Q !9 ? ,“d ?B4, v “d1#BT 9F Q ?, E,9FMY“ va va ea qZE “ZE Y“) ZE Q v,MATLAB

21、d+,t5 VZL) Z# ID: 1 Pawlak Z. Rough sets J . International Journal ofComputer and Information Science, 1982, 11( 5) : 341-356. 2 Pawlak Z. Rough sets ) theoretical aspects of reasoning aboutdata M . Norwell: Kluwer Academic Publisher, 1991: 1-5. 3 Pawlak Z. Rough set approach to knowledge-based deci

22、sionsupport J . European Journal of Operational Research,1997, 99( 1) : 48- 57. 4 f#Y“ s“d 7? D# +:v, 2004#( Zhang Xue-feng. Thelaunch and research for rough set dataanalysis system D . Shenyang: Northeastern University,2004. ) 5 Pawlak Z, Busse J G, Slowinski R, et al. Rough sets J .Communicationof

23、 the ACM, 1995, 38( 11) : 89- 95. 6 y +,;,#Y“- * #pZE J#v:1 S, 2003, 24( 3): 252- 255#( Hao L-i na, Wang Wei, Wu Guang-yu, et al. Research onrough set- neural network fault diagnosis method J. Journalof Northeastern University: NaturalScience, 2003, 24( 3) :252- 255. ) 7 Zhang X F, Zhang Q L. Progra

24、m realization of rough setattributes reduction C MProceedings of 6th World Congresson Control and Automation ( WCICA2006) . Piscataway:IEEE, 2006: 5995- 5999. 8 Wong S K M, Ziarko W. On optimal decision tables indecision tables J . Bulletin of the Polish Academy ofSciences, 1985, 33: 694- 696. 9 Now

25、icki R, Slowinski R, Stefanowski J. Evaluation ofvibroacoustic diagnosticsymptoms by means of therough setstheory J . Computers in Industry, 1992, 20( 2) : 141-152. 10, # 5MATLAB p M #: bv, 2004: 377- 382#( XueDing-yu, Chen Yang-quan. T hesolution on MAT LABof advanced application mathematics M . Beijing: T singhuaUniversity Press, 2004: 377- 382. )43第1期 张雪峰等: 粗糙集数据分析系统MATLAB仿真工具箱设计

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报