收藏 分享(赏)

太阳历表的简便数学模型.pdf

上传人:HR专家 文档编号:6252071 上传时间:2019-04-03 格式:PDF 页数:8 大小:382.20KB
下载 相关 举报
太阳历表的简便数学模型.pdf_第1页
第1页 / 共8页
太阳历表的简便数学模型.pdf_第2页
第2页 / 共8页
太阳历表的简便数学模型.pdf_第3页
第3页 / 共8页
太阳历表的简便数学模型.pdf_第4页
第4页 / 共8页
太阳历表的简便数学模型.pdf_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、925 3 q S/vSu m 25;31 9 8 6 M9Jo u r n al o f W u ha n T e e hn ie a l U n ive r sity o f Su rve y in g a n d M a p p in g Sep t . 1 9 8 6 VeL K1B ,4 ?a_ H,AG S?M V, Lbj n5 B T, H V9 s,V7y B a 09 9 eL V bYV) 9Ts, a “ -B ?a_1 p,“ S? M G , H94 7Tay a y !#5 ! T,N,A V( jo a j6 W H , H HS0 )otAV4 MS? M |

2、,B !? M , ZLb 09 09 (PCB12 1 1aPCB1 5 0 0a7 0 2 P) t #?, pB a9 9 VeL ,$ %5b g B T 9 s,K4 B a9 VeL b | N 9 T? M V 1 ,TV , ? B ?1 p,V7 P4hZT ? M G bBa # T1 . ja j6 9 m U, E E, QQm, S!19 8 6 M12 l.1 4 9 , j,:bV U,b,7m jb , j6 b o T 4:a = a r ct g (tg c OS E ) ,6 =a r c s in (sin s inb) . T Vn,1 p ja j,

3、A jb2 .9 4 Wb: = 2 3 0 2 7 , 0 82 6B(4 6 I.n8 4 5 + (00 0 5 9B0 0 0 18 1T )T )T +bT - ;bc, T119 0 0 M10 . 5 4 W W ,/ T9 T = 3 6 7 yBin tq7 (y + in t (m + 9 )2 )/ 4r+ d + h / 2 4 + in t(2 7 5 m / 9 ) -B6 9 4 0 0 6b5 / 3 6 5 2 5 ,Ty = yea r , in t=in te g r a te , m=m o u th , d = d a y, h = h ou rbc/

4、 T9 :b=(92 10B00 0 0 9 T )e o soB00 9 0 eos 2 8 + 05 5 1 c omZL + O0 2 2 e os (3 LBb)BBo0 0 9 co(L +b)BOl! 0 0 7 eos (ZLB0) + db( , ) ,Te6 ;b , L , Til -b3 . 9 L = 2 7 9 0 4 1m2 46 5 +B2 9 6 0 2 7 6 8z 3 T + 1 m0 8 9 T 2 :4 . j9 l = L + 6 L : + 6 L+ 6 L + Al,Tb L :, 6 L, 6 L , cbC| 9 TsYe /:6L : = (

5、1 0 5 5 , 1 0c0 6B7 2 4 4 T + o0 s 6T 2 ) sin G + (7 23 2 4B0c3 6T ) s in ZG + 1 1! 0 4 4 s in 3 G + Ol! 0 3 6s in 4 G ,TG , W Tf b6 L= e1! 4 5 4 s in D + oc0 1 3 s in 3 D + o1 7 7 s in (D + G) +ll,TD , G , ( W f b6 L =S ; ; c os (K ; ;BjG :Bi G ) ,Tn = 1a2a3a4a5sYV aaa !ar R, Gbn R , Tf , T V9 bS ,

6、 ,aK . , “ , ij , “ Bi “ V, ,.N TX$# a #;.1 5 0NBB bN,$# # , “ 991 20b=B(1 7 1. 2 3 4 + 00 17 T )s in o + 0m2 0 9 s in 2 8B1 1. 2 7 2 s in ZL + 0 1! 1 2 6 s in ( LBb) + 0 1! 0 2 1 e os (L +b)Bo l: 0 5 0 s in (3 LB(o ) + 0 1! 0 1 2 s in (ZLB0 ) + d ( c, E) ,T|il -b8 9 ,9 j7,AT1609 b v9 ,19 ,| Es 4b=a

7、 VeL V9 s$ , B ?1 p,8Bz, BtYb | a a; 8) ; , “ l1 ,“$#aa ! v “ v1 ,7cc“$# c,$#cbN9 j9 19bV7 VB a9 VeL bC|N 8 /:.9 119 0 0 M10 . 5 4 W WTT = 3 6 7 yBin tq7 (y + in t (m + 9 )/ 1 2 )/ 4r+ d + h / 2 4 + in t (2 7 5 m / 9 )B6 9 4 0 0 6 . 5 / 3 6 5 2 5 .2 .9$/ E G = 3 5 8b4 7 5 + 3 5 9 9 9 . 0 5 0TV = 2 1

8、 3 . 2 0 8 + 5 8 5 1 7 . 4 0 0 TM = 3 19 . 8 5 6 + 19 1 4 0 . 0 0 0 T= 2 2 5 . 3 3 1 + 3 0 3 4 . 6 0 0 T ,D = 3 5 0 . 7 3 7 + 4 4 5 2 6 7 . 1 0 0 T0 = 2 5 9 . 1 3 3B1 9 3 4 . 1 0 0 T .8 .9 C W j = 2 7 9 . 6 9 0 1 9 + 3 6 0 0 0b7 6 8 9 2 T + (1 . 9 1 9 4 6B0 . 0 0 4 7 9T ) sin G+ 0 . 0 2 0 0 0 s in Z

9、G + 0b0 0 0 2 9 s in 3 G+ 0b0 0 1 7 9 s in D1 5 1+ 0b0 0 13 4 c om(2 9 9 + V + G )+ 0b0 0 1 5 4 c o s (1 4 8 + ZVBZG )+ 0b0 0 0 6 9 eos (3 1 6 + ZVB3 G )+ 0 . 0 0 0 4 3 e o s (3 4 5 + 3 VB4 G )+ 0b0 0 0 2 8 e os (3 1 8 + 3 VBSG ) 2G)G)+ 0 . 0 0 0 5 7 cos (3 4 4BZM+ 0 . 0 0 0 4 9 e os (2 0 0BZM + 0 .

10、 0 0 2 0 0 e os (18 0BJ + G )+ 0b0 0 0 7 2 c o s (2 6 3BJ)+ 0 . 0 0 0 7 6 e os (8 7BZJ + ZG )+ 0b0 0 0 4 5 co s (10 9BZ J+ G ) ! cB0b0 0 4 7 9 s in GB0b0 0 0 3 5 s in (ZL ) .4 .9 jcl=2 3 . 4 5 2 2 9B0 . 0 13 0 lT + 0 . 0 0 2 5 6 cos 8 .5 .9 W H. H O HSb= 9 9 . 6 9 1 3 0 + 3 6 0 0 0 . 7 6 8 9 2 T + 0

11、 . 9 17 .= jP o = 0 . 0 0 2 4 4 . jB M =KvMb 3 ,# | b T, a9 1 p, (b.9 9 jo j6 a =or c t g (s in l coO s c / c o s lb)c6 = a r e s in (s in l . s in : ) .a9 Ts Ve , , H M jUSo a6 W H , H6b 9 ,i|9 TM MzS? M 1 ,1 , ,|19 8 5 M 1 Kv,Kl V1b1 5 21, 8 5 Mb a6 asbKv.l 6 S olBBl.eseseses.es.,a na X1l lnn a X

12、rn ln n ll n! S 1_ B0243698pn .U.n1n. pOdUg1bCQb gom Jg “,rO gO O, Ca1, . JqLaL:0.llnn,1 0b0 7 10b0 8 90b0 9 50b2 3 20b2 8 50b2 6 40b2 2 40b1 6 30b1 6 90b2 1 70b2 1 50b19 00 . 0 0 10b0 1 60b0 0 10b0 6 70b1 8 80b2 1 10b15 10b09 20 . 0 8 20b1 2 60b1 5 00b0 7 3S0b0 9 66b0 9 80b0 9 60b0 9 50b0 9 80b0 9

13、80b0 9 30b0 8 80b0 8 80b0 8 40b0 8 40b0 8 9S0b0 5 60b0 5 90b0 5 70b0 5 90b0 6 00b0 5 90b0 5 50b0 5 10b0 5 20b0 4 60b0 4 40b0 4 8V V A:o a6 s0Kv sY H2 lf 609 8bt|? 3YbY | h EaaZ HEZb T:co sm = s ins in 6 + COSc OS c OS t , ( 1 )a + t Bs , s=5 0 + T o + T o ,c OS a =( , in- Bc OS z s inJ) / COS ,oin z

14、 , ( 2 )tg a = s in t / ( s inJc o s t BCO s 0 tg ) . ( 3 ) T, jJa at ao Vo s0M _s,e9K9s:t =( c o s q / c o ,Js ino )n6 , ca +t 11 +5 0 ,( 4 )rp = c o stg abtbB“ gCO S qc OSa 6 , .()a _ =-_ / c o ssin t _ , 6 )1 5 3ab=ge o s 6 c o sqS ln z t _ +gs in t c OSJs in l z 6 ( 7 )Tt =Sb+ a b T6baabsbZY1“ T

15、b “( 5 ) Tc o sqabaJa6b1“ T,( 7 ) T5|e o sqasin zg gC|( 4 )at arpa6 1“ TbVS ) u?i$#1 u,K|V1a a aS0Kv ( 4)a( 5)a( 6)a( 7) T9 , /T:. ? E,- at , U2Ba , 2Bb b oab+Sb+t ,a +sb= o 4b2Ba 2Bb-= 0 06 t 00 1 6 = V2 3 ?56 t 00 12 0bb4 0b! e obb8 0bb3 0bb0b3 4 0b16 0b0 9 0b0 75 0oo0b3 0 0b1 5 0b1 6 0b1 3JJJJJJJ

16、JJa 0 n 0 , n o bnbbn oOm, JaJ UaI l BBB0b3 4 0b1 5 0b0 8 =a +Sb+t ,2 . ? E,a +Sb= 04- at J. , 3aU4 bU3 46=0o6 J 6= V23 . 5 0 ,f1t J o lfa ! lB2 0oo4 0oo6 0oo2 0oo4 0 0 2 0bb4 0nn3 0bBlc9 4b4 9b05 0 0 1b4 3b2 6b73 . ? EZ,6 Z , S b56 a 0l1 5 44 . HEZ,t a6 ZYt ZY, V6 b6 6 = 0o6 = + 2 35 6 =B2 3 5 0c1c

17、laB BaaBa aB I8B!4. 1 12c8l2c4 12c4 5c5 14c5l3c6l3cpB!7cp6cplmcplmcm7B/B7Bl4c36 ZY, V7 b7 6 = + 2 3z5 6 = 0 0 6 =B2 35 0lclaaBa aBBBlBBYB 6+ / glV V 4 A: ? EaZ H,K f /,o a6 aS0ZY1 5a1 01,1 01, ; HEZ H,K f /,a Y1 0 ,no 4,$#4K Hq, , ? v80o H,0 ; - l H =Zb5 aJa VsYh 055a5 1,3 1,ba 8 , VeL 9 jo a6 W H ,

18、 H HSb, VrB _abN V 1 ? EaZ# HEZb VI9 (p eB1 2 1 1 , p eB1 5 0 0 , 7 0 2 p) ,niB2 V H Y V,# VT04a: c#T9 a 98, H9 V5 H V, !B 9 Pb“ S? M G , H94 7T b1 5 5 IDq3rq4rq5rN e w e o m b , 5 . , T a bles o f the Su n , A st r . Pa pe r s , V o l. V l. p a r t l ,B8 9 5 .IV A N 1 . M u e lle r , S p he r ie a

19、l a n d Pr a e tiea l A str o n o m y , Fr ed e r ie k U n g a r Pa blish in gCobN e w Y o r k , 19 6 9 .Ben e t G G . , Y e a r ly e ts oFo u , ie r C oe ffie ie n ts fo r the E v a lu a tio n o fA str o n o m ica l D a ta , S u r ve y R e v je w , X x IV (15 9 ) , Ju ly, 19 7 5 .A . , o ?8 , S, 1

20、9 8 0 .S S, ? ,S? M , S, 1 9 81 , 19 82 , 19 8 3 ,19 8 4 , 1 9 8 5bA S im Ple M a th e m a tie a l M o d e l o f S o la r E Ph e m e r isD oR9 Y iy in gA b str eC tC o m m o n d e Pa r t m e n ts o f e n g in e e r in g s u r v e y de Pe n d o n t he s o la r e P he m e r is in th eC h in ese A st r

21、o n o m ie a l Y e a r B o o k fo r d e te r m in in g p o s itio n s a n d d ir e etio n s b y o bse r v in gt he Su n . T h is 15 e x tr em ely in e o n v e n ie n t .T h is p a pe r , a fte r a n a lys in g the ca le u la tio n s o f t he so la r e p he m e r is a ee o r d in g to t heN e w e o m

22、 b , 5 s o la r fo r m u la , e sta b lis he s a s im p le m a the m a tie a l m o d el o f so la r e p he m e r issu ita ble fo r a Poc ke t c o m p u te r o r Pr o g r a me ca le u la to r . T hr o u g h the a n a lys is o f thea c e u r a e y o f the c a lc u la tio n res u lt base d on th is m o

23、 d e l, it eo n c lu des t ha t the a c c u r a c y15 h ig h e n o u g h to m a k e as tr o n a m ica l Pos itio n s a n d o r ie n ta tio n s n o w a d a ys in g e n e r ele n g in e er in g s u r v e y . T he r e fo r e the m o d el w il n o t osy fr e e e n g in e e r in g s u r v e y in g fr o mt he Ch in es A str o n o m ie a l Y e a r B o o k , bu t a is o in c r e a se the s p ee d o f its fie ld w o r k .IK e y w o r d s l so la r ep h em e r is , C h in es e a s tr o n o m ie a l a lm a n a e ; a p p a re n t e e lip tieIO n g itu d e r ig h t , a sc e ns io n , d ee lina t io n1 5 6

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报