1、一、解:(1)I)点源或点汇 22dW cx icy z cuiv cdz x y zz z= = = =+ln( )ln( ) ln( )ln( );idW cWdzdzczdz ziWcre criccr c =+= = +=II)点涡 22()dW ic x iy z icuiv icdz x y zz z = = =+ln( )ln( ) ln( );ln()idW icWdzdziczdz ziWicre cicrccr =+= =(2)I)20; 2dWiQ dz i cdzQc+ = = =vII) 22;0dWiQ dz c c Qdz+ = = = =v二、 解:cossin
2、xryr=12121cos sin cos2211 1 1sin cos sin22rxyuvVrrxryrxyuvVrrrxry =+=+= + = + = =121cos sin sin22xyvu Vrrxryr =+=+=11221sin sin22 2dr r dr rr = =流线:12sin2r Const = (或 r x const = ) 10000002000000300000040000005000000302106024090270120300150330180 0三、 解: ln( ) ln( )22QWz zi=+ ln() ln()22ln( ) ln( )22
3、22iiQiW re reiQQri r+= +=+ln( )22ln( )22Qr ConstQr Const=+= =示意图如右所示: 四、 解:根据镜像法,求其关于实轴、虚轴和原点的镜像,四个复速度势叠加。 0000( ) ln( ) ln( ) ln( ) ln( )2222Wz zz zz zz zziiii=+ 五、Z平面内,有张角为 的角域,20izae= 处有强度为Q的点源,求其速度势。 解:保角变化:200; ()izzzaeia = 根据镜面定理:22( ) ln( ) ln( ) ln( )22QQWi a =+=+22() ( () ln( )2QWz W z z a = + 六、 解:如右图所示,当菱形角点 ,BD 时,形成宽为a的无穷长带域。相应变换点为: i 角点 z i ia 1 C ia -1 (人定) 2 D - 0 0 (人定) 3 A 0 1 (人定) 4 B 0 0.20.40.60.81302106024090270120300150330180 0=Const=ConstAB CDQ (还需z平面无穷远点存在点汇,被变换至原点) ( ) ln( ) ln( ) ln ln exp exp2222QQQQzWiiaa =+= + z