收藏 分享(赏)

matlab实现jpeg算法进行图像压缩的源代码.docx

上传人:pw17869 文档编号:6212520 上传时间:2019-04-02 格式:DOCX 页数:10 大小:80.46KB
下载 相关 举报
matlab实现jpeg算法进行图像压缩的源代码.docx_第1页
第1页 / 共10页
matlab实现jpeg算法进行图像压缩的源代码.docx_第2页
第2页 / 共10页
matlab实现jpeg算法进行图像压缩的源代码.docx_第3页
第3页 / 共10页
matlab实现jpeg算法进行图像压缩的源代码.docx_第4页
第4页 / 共10页
matlab实现jpeg算法进行图像压缩的源代码.docx_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、function jpeg% THIS WORK IS SUBMITTED BY:% OHAD GAL%close all;% =% section 1.2 + 1.3% =% the following use of the function: % plot_bases( base_size,resolution,plot_type )% will plot the 64 wanted bases. I will use “zero-padding“ for increased resolution% NOTE THAT THESE ARE THE SAME BASES !% for ref

2、erence I plot the following 3 graphs:% a) 3D plot with basic resolution (64 plots of 8x8 pixels) using “surf“ function% b) 3D plot with x20 resolution (64 plots of 160x160 pixels) using “mesh“ function% c) 2D plot with x10 resolution (64 plots of 80x80 pixels) using “mesh“ function% d) 2D plot with

3、x10 resolution (64 plots of 80x80 pixels) using “imshow“ function% NOTE: matrix size of pictures (b),(c) and (d), can support higher frequency = higher bases% but I am not asked to draw these (higher bases) in this section !% the zero padding is used ONLY for resolution increase !% get all base pict

4、ures (3D surface figure)plot_bases( 8,1,surf3d );% get all base pictures (3D surface figure), x20 resolutionplot_bases( 8,20,mesh3d );% get all base pictures (2D mesh figure), x10 resolutionplot_bases( 8,10,mesh2d ); % get all base pictures (2D mesh figure), x10 resolutionplot_bases( 8,10,gray2d );

5、% =% section 1.4 + 1.5% =% for each picture 09 perform a 2 dimensional dct on 8x8 blocks.% save the dct inside a cell of the size: 10 cells of 128x128 matrix% show for each picture, its dct 8x8 block transform.for idx = 0:9% load a pictureswitch idxcase 0,1, input_image_128x128 = im2double( imread(

6、sprintf( %d.tif,idx ),tiff ) );otherwise, input_image_128x128 = im2double( imread( sprintf( %d.tif,idx),jpeg ) );end % perform DCT in 2 dimension over blocks of 8x8 in the given picturedct_8x8_image_of_128x128idx+1 = image_8x8_block_dct( input_image_128x128 );if (mod(idx,2)=0)figure;end subplot(2,2,

7、mod(idx,2)*2+1);imshow(input_image_128x128);title( sprintf(image #%d,idx) );subplot(2,2,mod(idx,2)*2+2);imshow(dct_8x8_image_of_128x128idx+1);title( sprintf(8x8 DCT of image #%d,idx) );end% =% section 1.6% =% do statistics on the cell array of the dct transforms% create a matrix of 8x8 that will des

8、cribe the value of each “dct-base“ % over the transform of the 10 given pictures. since some of the values are% negative, and we are interested in the energy of the coefficients, we will% add the abs()2 values into the matrix.% this is consistent with the definition of the “Parseval relation“ in Fou

9、rier Coefficients% initialize the “average“ matrix mean_matrix_8x8 = zeros( 8,8 );% loop over all the picturesfor idx = 1:10% in each picture loop over 8x8 elements (128x128 = 256 * 8x8 elements)for m = 0:15for n = 0:15mean_matrix_8x8 = mean_matrix_8x8 + .abs( dct_8x8_image_of_128x128idx(m*8+1:8,n*8

10、+1:8) ).2;endendend% transpose the matrix since the order of the matrix is elements along the columns,% while in the subplot function the order is of elements along the rowsmean_matrix_8x8_transposed = mean_matrix_8x8;% make the mean matrix (8x8) into a vector (64x1)mean_vector = mean_matrix_8x8_tra

11、nsposed(:);% sort the vector (from small to big)sorted_mean_vector,original_indices = sort( mean_vector );% reverse order (from big to small)sorted_mean_vector = sorted_mean_vector(end:-1:1);original_indices = original_indices(end:-1:1);% plot the corresponding matrix as asked in section 1.6figure;f

12、or idx = 1:64subplot(8,8,original_indices(idx);axis off;h = text(0,0,sprintf(%4d,idx);set(h,FontWeight,bold);text(0,0,sprintf( n_%1.1fdb,20*log10(sorted_mean_vector(idx) );end% add a title to the figuresubplot(8,8,4);h = title( Power of DCT coefficients (section 1.6) );set( h,FontWeight,bold );% =%

13、section 1.8% =% picture 8 is chosen% In this section I will calculate the SNR of a compressed image againts% the level of compression. the SNR calculation is defined in the header % of the function: which is given below.% if we decide to take 10 coefficients with the most energy, we will add% zeros

14、to the other coefficients and remain with a vector 64 elements long% (or a matrix of 8x8)% load the original imageoriginal_image = im2double( imread( 8.tif,jpeg ) );% I will use this matrix to choose only the wanted number of coefficients% the matrix is initialized to zeros - dont choose any coeffic

15、ient at allcoef_selection_matrix = zeros(8,8);% compressed picture set (to show the degrading)compressed_set = 1 3 5 10 15 20 30 40;% this loop will choose each time, the “next-most-energetic“ coefficient, % to be added to the compressed image - and thus to improove the SNRfor number_of_coefficient

16、= 1:64% find the most energetic coefficient from the mean_matrixy,x = find(mean_matrix_8x8=max(max(mean_matrix_8x8);% select if for the compressed imagecoef_selection_matrix(y,x) = 1;% replicate the selection matrix for all the parts of the dct transform% (remember that the DCT transform creates a s

17、et of 8x8 matrices, where% in each matrix I need to choose the coefficients defined by the % matrix )selection_matrix = repmat( coef_selection_matrix,16,16 );% set it as zero in the mean_matrix, so that in the next loop, we will% choose the “next-most-energetic“ coefficientmean_matrix_8x8(y,x) = 0;%

18、 choose the most energetic coefficients from the original image% (total of coefficients for this run in the loop)compressed_image = image_8x8_block_dct(original_image) .* selection_matrix;% restore the compressed image from the given set of coeficientsrestored_image = image_8x8_block_inv_dct( compre

19、ssed_image );% calculate the snr of this image (based on the original image)SNR(number_of_coefficient) = calc_snr( original_image,restored_image );if isempty(find(number_of_coefficient=compressed_set)if (number_of_coefficient=1)figure;subplot(3,3,1);imshow( original_image );title( original image );e

20、ndsubplot(3,3,find(number_of_coefficient=compressed_set)+1);imshow( restored_image );title( sprintf(restored image with %d coeffs,number_of_coefficient) );endend% plot the SNR graphfigure;plot( 1:64,20*log10(SNR) );xlabel( numer of coefficients taken for compression );ylabel( SNR db ( 20*log10(.) )

21、);title( SNR graph for picture number 8, section 1.8 );grid on;% -% I N N E R F U N C T I O N I M P L E M E N T A T I O N% -% -% pdip_dct2 - implementation of a 2 Dimensional DCT% assumption: input matrix is a square matrix !% -function out = pdip_dct2( in )% get input matrix sizeN = size(in,1);% bu

22、ild the matrixn = 0:N-1;for k = 0:N-1if (k0)C(k+1,n+1) = cos(pi*(2*n+1)*k/2/N)/sqrt(N)*sqrt(2);elseC(k+1,n+1) = cos(pi*(2*n+1)*k/2/N)/sqrt(N);end endout = C*in*(C);% -% pdip_inv_dct2 - implementation of an inverse 2 Dimensional DCT% assumption: input matrix is a square matrix !% -function out = pdip

23、_inv_dct2( in )% get input matrix sizeN = size(in,1);% build the matrixn = 0:N-1;for k = 0:N-1if (k0)C(k+1,n+1) = cos(pi*(2*n+1)*k/2/N)/sqrt(N)*sqrt(2);elseC(k+1,n+1) = cos(pi*(2*n+1)*k/2/N)/sqrt(N);end endout = (C)*in*C;% -% plot_bases - use the inverse DCT in 2 dimensions to plot the base pictures

24、% Note: we can get resolution be zero pading of the input matrix !% that is by calling: in = zeros(base_size*resolution)% where: resolution is an integer 1% So I will use zero pading for resolution (same as in the fourier theory)% instead of linear interpolation.% -function plot_bases( base_size,res

25、olution,plot_type )figure;for k = 1:base_sizefor l = 1:base_sizein = zeros(base_size*resolution);in(k,l) = 1; % “ask“ for the “base-harmonic (k,l)“subplot( base_size,base_size,(k-1)*base_size+l );switch lower(plot_type)case surf3d, surf( pdip_inv_dct2( in ) );case mesh3d, mesh( pdip_inv_dct2( in ) )

26、;case mesh2d, mesh( pdip_inv_dct2( in ) ); view(0,90);case gray2d, imshow( 256*pdip_inv_dct2( in ) ); end axis off;endend% add a title to the figuresubplot(base_size,base_size,round(base_size/2);h = title( Bases of the DCT transform (section 1.3) );set( h,FontWeight,bold );% -% image_8x8_block_dct -

27、 perform a block DCT for an image% -function transform_image = image_8x8_block_dct( input_image )transform_image = zeros( size( input_image,1 ),size( input_image,2 ) );for m = 0:15for n = 0:15transform_image( m*8+1:8,n*8+1:8 ) = .pdip_dct2( input_image( m*8+1:8,n*8+1:8 ) );endend% -% image_8x8_block

28、_inv_dct - perform a block inverse DCT for an image% -function restored_image = image_8x8_block_inv_dct( transform_image )restored_image = zeros( size( transform_image,1 ),size( transform_image,2 ) );for m = 0:15for n = 0:15restored_image( m*8+1:8,n*8+1:8 ) = .pdip_inv_dct2( transform_image( m*8+1:8

29、,n*8+1:8 ) );endend% -% calc_snr - calculates the snr of a figure being compressed% assumption: SNR calculation is done in the following manner:% the deviation from the original image is considered % to be the noise therefore:% noise = original_image - compressed_image% the SNR is defined as: % SNR

30、= energy_of_image/energy_of_noise% which yields: % SNR = energy_of_image/(original_image-compressed_image)2)% -function SNR = calc_snr( original_image,noisy_image )original_image_energy = sum( original_image(:).2 );noise_energy = sum( (original_image(:)-noisy_image(:).2 );SNR = original_image_energy/noise_energy;以下是 1-9 号原图像,放到 matlab 的.m 文件目录里,重命名9 个图像名为 1、2、3 、4、5 、6、7、8 、9

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 网络科技 > 图形图像

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报