1、 h b/ 7?# 1 u2 1 1(1.华中科技大学材料成形与模具技术国家重点实验室;2.武汉工程大学机电学院)K 1 MFT(Minimum Filling Time)E1 7? # bM11o/ , bD、 b“d、 、p 、“d。iZL101, b/ k“ ?F。TV ,ZL101 b k“ ?1 Y v4 6, A9, F Y,BBV ,YVZ T z6 ,nm4。858 /+/# 2008 M28 11 图3 高真空压铸技术开发的相关内容1.真空切换阀 2.真空装置 3.真空阀控制单元 4.真空阀 5.活塞环 6.弹簧 7.冲头bDT /:V 7 S H, , “ B bD1w4,
2、45 8,N H12) , bD)“ /;A 8,YV g16 Y,N H n5(i w 13; 13 sA _,w12;12V7V 7_,V 7PD1, bD,BVA rV 7D -;V, u 7,$ 8w49,YV7 13V7_P, P bDu 7i 。m4 V, bDy V We., PV V vM, D1 2 # V L。图4 真空截止阀的结构原理示意图1.动型 2.定型 3.排气口 4.复位导杆 5.定型压板 6.从动活塞套 7.从动活塞 8.弹簧 9.复位挡板 10.容置槽 11.限位板 12.杠杆 13.主动活塞 14.主动活塞套 15.导流通路 16.进料口2.2 b b“d
3、b1 p H 8 br91 kPa , P b“dA v ,L HW =| 8 8。 !981 v 7,) b / 7 V y | 8 8 b。 7 85 b,W,nm57 。图5 高真空压铸工艺用真空系统的原理2.3 bx8p x 4 B b 8s ip 4 , 3r q、sp ?、 z 3 l6。x 4T “ $, i# 8T/ 7“CV 8 T。yx 4 ,S1| b,+Y 2000 M , b/ f ?Z,Px 4 7? | 。hx8 44 F、 、 FxF T1s, 6F 、 # s7 9 ?。V , 1s( s ) Fx50%、 F 25%、 15%、 # s10% H, 4 p
4、?# z; a p , 270 P,% HW10 sP8 。2.4 b ZE rT Y 8 b1y ,7 % b rTy ,“ 7 = b HW9 “d bV9 , “d bV9 ,7 % 1oy 。 !9 | m6 U Z9 : 9 ! B v V% ,i 7 ! #;sY i 、 h i =CW 7 !,i =F0 ;sY *、 *、 *W(s ) = 7 !;| “dM , 8 P = H, VYV,7859h b/ 7?# 图6 模具的密封方法1.动模底板 2.顶杆压板 3.顶杆板 4.垫块 5、9.抽气道 6.动模垫板 7.动模套板 8.定模套板 10.定模底板 11.缓冲气槽12.
5、型腔 13.定模镶块 14.动模镶块 15.连接通道 16.浇口套17.浇口 18.压射冲头 19.密封槽 20.压射室 21、22、26.密封槽 23、24、25、27.缓冲气槽 28.密封板 29.螺栓 30.耐热密封圈 31.顶杆 8。 ZE+ = 7 ! 。 8 V, 8YV# 9 T:Q =A 2p (1)T,QYV# 1i 8 b ; “ ;A# ; b ;p# 。yN P 8 8 1 | % = p, 7 !,p 8 W 。A , 7 !, b $ “d# H, 8Wpl,N P 8 b Qd ,N 8 b 。3 高真空压铸试验3.1 k !#ZEk ZL101, hS k“ 。
6、 MFTE , g 。m7 bD# k“ 。 2 800kN T i。|B ZL101 720 P,8b 15 min; F a M4Al-10Sr%4Al-5Ti-B;10 min 。 F F , 150 。 k“BsT6 ) , sY k ?,4 F, k“ L nm8。图7 试验用压铸模及真空截止阀图8 高真空压铸的ZL101铝合金标准试样3.2 kT#s3.2.1 k“4 m9ZL101 b k“( )ZL101 Y k“(/)T6 ) 4。m V?C, b k ) 4 A C;M1/, Y k“ ) 4 CBt A v 。yN 7? b/ ? V ) q。图9 高真空压铸(上)和普通
7、压铸(下)的试样热处理后外观3.2.2 k“ ?m10 hA700 , (a)抗拉强度(b)伸长率图10 高真空压铸与普通压铸ZL101试样的力学性能对比860+/# 2008 M28 11 14 MPa,9 9 MPa, h 1.5 m/sHq/, k“ ?,T19 /ZL101 ?。 bZL101 k“ Y1 ?S , T6 ) ( v4。 H F 417.16%、 % q471.98%, 4A。 6 H % q9V K1 p。T6 ) bq F B4,9 7.68%,r 220 MPa,1 /T6 ) 9F,B ,1BF。5 b k“ ) % q1 H /,v 6.78%, V /K1
8、p。3.2.3 k“Fm11 k /MF, bq C ,FM ,nm11a;7m11c Yq A di,F9 ;m11b ) bqF A%, d;m11d ) YqF A9 %, dy8 n7 A9v。(a)高真空压铸,铸态 (b)高真空压铸,T6热处理 (c)普通压铸,铸态 (d)普通压铸,T6热处理图11 高真空压铸和普通压铸ZL101的显微组织4 结论 bZL101 k“, F 、 %qsY1 Y417.16%、71.98%;T6 ), b k“V , F 1 4 7.68%, % q5/ 6.78%。 I D1 , , . b/ # h 7?C# - J.+/# ,2007,27(12
9、):939-942.2 Z 6P p./!?K f8J./, 2003,75(6):422-427.3 ./!?ZJ./,2004,76(4):266-271.4 JOHANN E.Vacuum die casting technology for automotive com-ponentsC.Ohio:NADCA.2006:T06-62.5 , . bEv#Z, ,_ . hx 4 7? P ?J.+/# ,2007,27(11):850-852.9 u, , .B b .S ,200720085341.9P,2007.06.21.(I :S)2009S( Z)S= 0 Z 2009 0
10、F / ):上海光大会展中心HW:2009年3月810日Z “:上海市珠城路118弄1号2401室I:201100:86-21-33586934.:86-21-54533700E-mail: “ :张健先生13817988240p “:中国机械工程学会磨损失效分析及抗磨技术专业委员会861h b/ 7?# neering, Nanchang University, Nanchang, China;2.School of Mechanical and Electronic Engineering,Nanchang University, Nanchang, China;3.GeneralRese
11、arch Institute for Nonferrous Metals, Beijing,China)2008,28(11)846848Abstract The semi-solid slurry with fine near-spheroi-dal structure of AZ91D alloy was prepared bya rotarypouring method.The results reveal that the primaryphase particles with distributed fine spheroidal insemi-solid structure can
12、 be presented with decreasingthe pouring temperatureandincreasing rotating veloci-ty of the duct as well as choosing proper declined an-gular.The desirable semi-solid microstructure can beobtained with pouring at 630 and rotating at 75 r/min as well as declined angle of 25.Key Words:Rotating Duct, S
13、lurry Preparation, Pou-ringTemperature, MicrostructureEvolutionof Pro-eutectic Austenite inSemi-solid Hypo-eutectic High Cr Cast Iron during Remelting ZhouRongfeng, Jiang Wenming, Jiang Yehua, ZhouRong(Faculty of Mechanical and Electrical Engineer-ing, Kunming University of Science and Technology,Ku
14、nming, China)2008,28(11)849852Abstract Semi-solidbillets of hypoeutectichigh Cr castiron preparedby the sloping plate method were rehea-ted at 1300, and the evolution of pro-eutectic aus-teniteinthe semi-solidbillets during reheating was ob-served by the Leica image analyzer.It is found thatthe sphe
15、roidization and the exacerbation due to mer-gence growth as two main forms for the evolution ofaustenite during holding have been generated byturns.With increasing in holding time, the sphe-roidization and the mergence growth time are in-creased, and the exacerbation due to mergence growthbecomes mo
16、re prominent also.The grain with shapefactor of 0.86 and average equivalent diameter of 78.8m canbe obtained with holding for 15min, while thegrain with shape factor of 0.7 and average equivalentdiameter of 104.1m can be obtainedwithholding for60 min.KeyWords:SlopingPlate Method, Semi-solid, Hypoeu-
17、tectic HighCr CastIron, Pro-eutectic AusteniteEffects ofYandCe AdditiononMicrostructureandMe-chanical Properties of Squeezing Casting Mg-6Al Mag-nesiumAlloy Zhu Lijuan1 , Qian Jia1 , Liu Yue2, LiuRuihua2,Zhang Jingya2(1.College of Mechanical En-gineering, Shenyang University, Shenyang, China;2.Colle
18、ge of Material and Metallurgy, Northeastern U-niversity, Shenyang, China)2008,28(11)852855Abstract Effects of Y and Ce addition on microstruc-ture and mechanical properties of squeezing castingMg-6Al alloy were investigated by OM(optical micro-scope)and SEM (scanning electron microscope), uni-versal
19、 tensile tester.The results indicate that micro-structure of squeezing casting Mg-6Al alloy is trans-formedfrom net-like structure into discontinuous net-like structure, in which the grain size is greatly re-fined, and mechanical properties of the alloy at roomtemperature can be significantly raised
20、 with Y and Cemixed addition.Tensile strength andelongation of thesqueezing casting Mg-6Al alloy with 0.5% Ce and0.5%Y addition are increased from 126 MPa to 200MPa andfrom 1%to 8.5%, respectively.KeyWords:Mg Alloy, RE, Squeezing Casting, Micro-structure, Mechanical PropertiesDie Casting Die with De
21、mountable Sliding Block andBendingTie BarsDrivenby Hydraulic Equipment ZhanFeixiang, Tian Fuxiang(Qingdao Technological Uni-versity, Qingdao, China)2008,28(11)856857Abstract The structure characteristics and operationmechanism of the die casting die with demountablesliding block and bending tie bars
22、 driven by the hydroequipment were introduced.Bending tie bars drew-pulled the sliding block by hydraulic core-pulling de-vices and mould opening forces to loose the demount-able sliding block.In addition, the side-pulling corefor the die castings is controlledby sliding block mech-anism with obliqu
23、e pin, and stream distribution conealso canbe run as aninsert in the die.The dieexhibitsreliability and convenience in operation and improvesthe accuracy of producedparts due to solving theprob-lem in drawing the demountable sliding blocks.Key Words:Bending Tie Bar, Demountable SlidingBlock, Stream
24、Distribution Cone, Insert, Die CastingDieDevelopmentandApplicationof HighVacuumDieCast-ing inAluminum Alloy Wan Li1 , Zhao Yunyun2 , PanHuan1, Wu Shusen1(1.State Key Laboratory of Ma-terials Processing and Die 2.College of Mechanical and Electronic Engi-neering, Wuhan Institute of Technology, Wuhan,
25、China)2008,28(11)858861Abstract We have developed some key unites relatedtohigh vacuum die casting process based on MFT(mini-mum filling time)method, including shut-off valve,vacuum system, sealing structure of die, releasing a-gent and gating system.The mechanical propertiesand microstructure of ZL
26、101 alloy in high vacuum diecasting process were researched.The results indicatethat, compared with those of one in conventional diecasting, tensile strength and elongation of the ZL101alloy in high vacuum die casting reach up to 204.55MPa and to 8.41%, increased by 17.16% and by71.98%, respectively
27、, showing the great improve-ment of mechanical properties, especially ductility.However, compared with as-cast one, T6 treatedZL101 alloy after high vacuum die casting are in-creased by 7.68%in tensile strength anddecreasedby6.78%in elongation.Key Words:High Vacuum Die Casting, Al-Si-Mg Al-loy, Stre
28、ngth, Ductility, MicrostructureWaysof Improving Quality of Investment Castings GuoJian(Ningbo Heli Mould Science and TechnologyCo., Ltd., Ningbo, China)2008,28(11)862863Abstract Production of the high quality investmentcastings is dependent on rational gating system designand proper castings structu
29、re.Modified equation forgating system was derived by altering parameters inempiric formula for gating system design and determi-ning the applied scope and boundary conditions on thebasis of analysis of data from conventional gating sys-tem design for investment castings with computer bymathematical statistics method, which canguide other