收藏 分享(赏)

[学子教育]2010华师大八年级数学下-函数及一次函数精英训练题.doc

上传人:yjrm16270 文档编号:6165232 上传时间:2019-03-31 格式:DOC 页数:12 大小:787.50KB
下载 相关 举报
[学子教育]2010华师大八年级数学下-函数及一次函数精英训练题.doc_第1页
第1页 / 共12页
[学子教育]2010华师大八年级数学下-函数及一次函数精英训练题.doc_第2页
第2页 / 共12页
[学子教育]2010华师大八年级数学下-函数及一次函数精英训练题.doc_第3页
第3页 / 共12页
[学子教育]2010华师大八年级数学下-函数及一次函数精英训练题.doc_第4页
第4页 / 共12页
[学子教育]2010华师大八年级数学下-函数及一次函数精英训练题.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、12010 华师大八年级数学下-函数及一次函数(精英训练版)一、选择:1 (莆田)如图 1,在矩形 中,动点 从点 出发,沿 方向运动至点 处停MNPQRNPQM止设点 运动的路程为 , 的面积为 ,如果 关于 的函数图象如图 2 所示,则当 时,Rx yx9x点 应运动到( )Q PRM N(图1)(图2)4 9yxOA 处 B 处 C 处 D 处PQM2 (重庆綦江)如图 1,在直角梯形 ABCD 中,动点 P 从点 B 出发,沿 BC,CD 运动至点 D 停止设点 P 运动的路程为 , ABP 的面积为 y,如果 y 关于 x 的函数图象如图 2 所示,则BCD 的面积是( )xA3 B

2、4 C5 D6图 12O 5 xA BCPD图 23.(黔东南州)如图,在凯里一中学生耐力测试比赛中,甲、乙两学生测试的路程 s(米)与时间 t(秒)之间的函数关系的图象分别为折线 OABC 和线段 OD,下列说法正确的是( )A、乙比甲先到终点 B、乙测试的速度随时间增加而增大C、比赛进行到 29.4 秒时,两人出发后第一次相遇 D、比赛全程甲的测试速度始终比乙的测试速度快4 (兰州)函数 y 中自变量 x 的取值范围是x231A x2 B x3 C x2 且 x3 D x2 且 x35 (遂宁)已知整数 x 满足-5x5,y 1=x+1,y 2=-2x+4 对任意一个 x,m 都取 y1,

3、y 2中的较小值,则 m的最大值是2yxOBAA.1 B.2 C.24 D.-96 (凉山州)若 ,则正比例函数 与反比例函数 在同一坐标系中的大致图象可能是( 0abyaxbyx)6 (牡丹江)如图,平面直角坐标系中,在边长为 1 的正方形 ABCD的边上有一动点 P沿ABCDA运动一周,则 P的纵坐标 y与点 P走过的路程 s之间的函数关系用图象表示大致是( )7 (安徽)已知函数 的图象如图,则 的图象可能是【 】ykxb2ykxb8 (日照)如图,点 A 的坐标为(1,0),点 B 在直线 y=x 上运动,当线段 AB 最短时,点 B 的坐标为 ( ) A.(0,0) B.( , )

4、2C.( , ) D.( , )219 (重庆)如图,在矩形 中,AB=2, ,动点 P 从点 B 出发,ABCD1B沿路线 作匀速运动,那么 的面积 S 与点 P 运动的路程 之间的函数图象大致是( B x)yxOCyxOAyxODyxOB1 2 3 412ysO 1 2 3 412ysO s 1 2 3 412ysO1 2 3 412yOA. B. C. D.1O xy-11O xy-11O xy-11O xy-11O xy1A B C D3D CPBAO311 3SxAO11 3Sx O 3Sx3O11 3SxB C D210 (衢州) P1(x1, y1), P2(x2, y2)是正比

5、例函数 y= -x 图象上的两点,则下列判断正确的是A y1y2 B y1y2 D当 x1x2时, y1y2二、填空:1(武汉)如图,直线 kxb经过 ()A, , (), 两点,则不等式 kb的解集为 yxOAB2 (常 德 市 )一个函数的图象关于 y轴成轴对称图形时,称该函数为偶函数 那么在下列四个函数yx; 31x; 6x; 21中,偶函数是 (填出所有偶函数的序号) 3 (桂林市、百色市)如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为 Oyx2-13 (十堰市)已知函数 1y的图象与 x轴、 y 轴分别交于点 C、 B, 与双曲线 xky交于点

6、A、 D, 若 AB+CD= BC,则 k 的值为 4 (日照)正方形 A1B1C1O, A2B2C2C1, A3B3C3C2,按如图所示的方式放置点 A1, A2, A3,和点C1, C2, C3,分别在直线 (k0)和 x 轴上,已知点 B1(1,1), B2(3,2), yxb4则 Bn的坐标是_ yxO C1B2A2C3B1A3 B3A1C2(第 17 题图)yO xAC B5已知关于 、 的一次函数 的图象经过平面直角坐标系中的第一、三、四象限,那xy12ymx么 的取值范围是 m6 (包头)如图,已知一次函数 的图象与反比例函数 的图象在第一象限相交于点 ,与kyxA轴相交于点 轴

7、于点 , 的面积为 1,则 的长为 (保留根号) xCABx, AOB AC三、解答:1.(重庆市江津区)如图,反比例函数 xy2的图像与一次函数 bkxy的图像交于点 A(,2),点B(2, n ),一次函数图像与 y 轴的交点为 C。(1)求一次函数解析式;(2)求 C 点的坐标;(3)求AOC 的面积。2 (济宁市)阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数 的图象为直线 ,11(0)ykxb1l一次函数 的图象为直线 ,若 ,且22(0)ykxb2l12k,我们就称直线 与直线 互相平行. 12b1

8、l2l解答下面的问题:(1)求过点 且与已知直线 平行的直线 的函数(,4)P1yxl表达式,并画出直线 的图象;l(2)设直线 分别与 轴、 轴交于点 、 ,如果直线 :yxABm与直线 平行且交 轴于点 ,(0)ykxtlC求出 的面积 关于 的函数表达式.StyxO246 2 4 62 253.(黔东南州)凯里市某大型酒店有包房 100 间,在每天晚餐营业时间,每间包房收包房费 100 元时,包房便可全部租出;若每间包房收费提高 20 元,则减少 10 间包房租出,若每间包房收费再提高 20 元,则再减少 10 间包房租出,以每次提高 20 元的这种方法变化下去。(1)设每间包房收费提高

9、 x(元) ,则每间包房的收入为 y1(元) ,但会减少 y2间包房租出,请分别写出 y1、y 2与 x 之间的函数关系式。(2)为了投资少而利润大,每间包房提高 x(元)后,设酒店老板每天晚餐包房总收入为 y(元) ,请写出 y 与 x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由。4.(江苏省)某加油站五月份营销一种油品的销售利润 (万元)与销售量 (万升)之间函数关系的yx图象如图中折线所示,该加油站截止到 13 日调价时的销售利润为 4 万元,截止至 15 日进油时的销售利润为 5.5 万元 (销售利润(售价成本价)销售量)请你根据图象及加油站五月

10、份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量 为多少时,销售利润为 4 万元;x(2)分别求出线段 AB 与 BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在 OA、 AB、 BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)5 (成都)已知一次函数 与反比例函数 ,其中一次函数 的图象经过点2yxkyx2yxP( ,5)(1)试确定反比例函数的表达式;k(2)若点 Q 是上述一次函数与反比例函数图象在第三象限的交点,求点 Q 的坐标66(安顺)已知一次函数 (0)ykxb和反比例函数 2kyx的图象交于点 A(1,1)(1)

11、求两个函数的解析式;(2) 若点 B 是 轴上一点,且AOB 是直角三角形,求 B 点的坐标。7 (重庆綦江)如图,一次函数 的图象与反比例函数 的图象相交于ykxb(0)(0)myxA、B 两点(1)根据图象,分别写出点 A、B 的坐标;(2)求出这两个函数的解析式1BAO xy18 (威海)一次函数 的图象分别与 轴、 轴交于点 ,与反比例函数 的图象相交yaxbxy,MNkyx于点 过点 分别作 轴, 轴,垂足分别为 ;过点 分别作 轴,,ABACECEBF轴,垂足分别为 与 交于点 ,连接 DyFD, , BKD(1)若点 在反比例函数 的图象的同一分支上,如图 1,试证明:, kyx

12、 ;AEDKCFBKS四 边 形 四 边 形 NM(2)若点 分别在反比例函数 的图象的不同分支上,如图 2,则 与 还相等吗?试证, kyxANBM明你的结论O C F MDENKyx1()A, 2By,(第 25 题图1)O CD KFENyx1()A,3(),M(第 25 题图2)7s/分分6t/分806020 30019 (大兴安岭)邮递员小王从县城出发,骑自行车到 A 村投递,途中遇到县城中学的学生李明从 A 村步行返校小王在 A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到 1 分钟二人与县城间的距离 (千米)和小王从县城出发后

13、所用的时间 (分)之s t间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案(2)小王从县城出发到返回县城所用的时间(3)李明从 A 村到县城共用多长时间?10某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降今年三月份的电脑售价比去年同期每台降价 1000 元,如果卖出相同数量的电脑,去年销售额为 10 万元,今年销售额只有 8 万元(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑已知甲种电脑每台进价为 3500 元,乙种电脑每台进价为 3000 元,公司预计用不多于 5 万元

14、且不少于 4.8 万元的资金购进这两种电脑共 15 台,有几种进货方案?(3)如果乙种电脑每台售价为 3800 元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金 元,要使(2)中所有方案获利相同, 值应是多少?此时,哪种方案对公司更有利?aa11 (乌鲁木齐市)星期天 8:008:30,燃气公司给平安加气站的储气罐注入天然气之后,一位工作人员以每车 20 立方米的加气量,依次给在加气站排队等候的若干辆车加气储气罐中的储气量 (立方y米)与时间 (小时)的函数关系如图 2 所示x(1)8:008:30,燃气公司向储气罐注入了多少立方米的天然气?(2)当 时,求储气罐中的储气量

15、(立方米)与时间 (小时)的函数解析式;0.5 yx(3)请你判断,正在排队等候的第 18 辆车能否在当天 10:30 之前加完气?请说明理由y(立方米 )x(小时)10 0008 0002 0000 0.5 10.5图 28图 1560404015030单位:cmABB12 (湖北荆州)由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为 0.1 万元台,并预付了 5 万元押金。他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于 34 万元,但不高于 40 万元若一年内该产品的售价

16、 (万元台)与月次 ( 且为整数)满足关系是yx12式: ,一年后发现实际每月的销售量 (台)与月次 之间存在如图所0.5.2(14)6xxy px示的变化趋势 直接写出实际每月的销售量 (台)与月次 之间的函数关系式;px 求前三个月中每月的实际销售利润 (万元)与月次 之间的函数关系式;w 试判断全年哪一个月的的售价最高,并指出最高售价; 请通过计算说明他这一年是否完成了年初计划的销售量364 月2040 x(台)p12 月13.(河北)某公司装修需用 A 型板材 240 块、B 型板材 180 块,A 型板材规格是 60 cm30 cm,B 型板材规格是 40 cm30 cm现只能购得规

17、格是 150 cm30 cm 的标准板材一张标准板材尽可能多地裁出 A型、B 型板材,共有下列三种裁法:(图 15 是裁法一的裁剪示意图)裁法一 裁法二 裁法三A 型板材块数 1 2 0B 型板材块数 2 m n设所购的标准板材全部裁完,其中按裁法一裁 x 张、按裁法二裁 y张、按裁法三裁 z 张,且所裁出的 A、B 两种型号的板材刚好够用(1)上表中, m = , n = ;(2)分别求出 y 与 x 和 z 与 x 的函数关系式;(3)若用 Q 表示所购标准板材的张数,求 Q 与 x 的函数关系式, 并指出当 x 取何值时 Q 最小,此时按三种裁法各裁标准板材多少张?14(潍坊)某蔬菜加工

18、厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱供应这种9纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为 4 元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取工厂需要一次性投入机器安装等费用 16000 元,每加工一个纸箱还需成本费 2.4 元(1)若需要这种规格的纸箱 x个,请分别写出从纸箱厂购买纸箱的费用 1y(元)和蔬菜加工厂自己加工制作纸箱的费用 2y(元)关于 (个)的函数关系式;(2)假设你是决策者,你认为应该选择哪种方案?并说明理由15.(咸宁市)某车站客流量大,旅客往往需长时间排队等候购票经调查统计发现,每天开始售票

19、时,约有 300 名旅客排队等候购票,同时有新的旅客不断进入售票厅排队等候购票,新增购票人数 (人)与y售票时间 (分)的函数关系如图 所示;每个售票窗口票数 (人)与售票时间 (分)的函数关系x yx如图 所示某天售票厅排队等候购票的人数 (人)与售票时间 (分)的函数关系如图 所示, yx已知售票的前 分钟开放了两个售票窗口a(1)求 的值;(2)求售票到第 60 分钟时,售票厅排队等候购票的旅客人数;(3)该车站在学习实践科学发展观的活动中,本着“以人为本,方便旅客”的宗旨,决定增设售票窗口若要在开始售票后半小时内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算

20、,至少需同时开放几个售票窗口?16 (牡丹江)甲、乙两车同时从 A地出发,以各自的速度143124030078ax/分y/人O O O(图) (图) (图)x/分y/人x/分y/人10匀速向 B地行驶甲车先到达 B地,停留 1 小时后按原路以另一速度匀速返回,直到两车相遇乙车的速度为每小时 60 千米下图是两车之间的距离 y(千米)与乙车行驶时间 x(小时)之间的函数图象(1)请将图中的( )内填上正确的值,并直接写出甲车从 A到 B的行驶速度;(2)求从甲车返回到与乙车相遇过程中 与 x之间的函数关系式,并写出自变量 的取值范围(3)求出甲车返回时行驶速度及 A、 两地的距离17 (牡丹江)

21、某冰箱厂为响应国家“家电下乡”号召,计划生产 、 两种型号的冰箱 100 台经预算,AB两种冰箱全部售出后,可获得利润不低于 4.75 万元,不高于 4.8 万元,两种型号的冰箱生产成本和售价如下表:型号 A 型 B 型成本(元/台) 2200 2600售价(元/台) 2800 3000(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受 13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学其中体育

22、器材至多买 4 套,体育器材每套 6000 元,实验设备每套 3000 元,办公用品每套 1800 元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种18 (长春)某部队甲、乙两班参加植树活动乙班先植树 30 棵,然后甲班才开始与乙班一起植树设甲班植树的总量为 (棵) ,乙班植树的总量为 (棵) ,两班一起植y甲 y乙树所用的时间(从甲班开始植树时计时)为 (时) , 、 分别与 之间的部分函数图象如图所示x甲 乙 x(1)当 时,分别求 、 与 之间的函数关系式 (3 分)06x y甲 乙(2)如果甲、乙两班均保持前 6 个小时的工作效率,通过计算说明,当 时,甲

23、、乙两班植树8的总量之和能否超过 260 棵 (3 分)(3)如果 6 个小时后,甲班保持前 6 个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树 2 小时,活动结束当 时,两班之间植树的总量相差 20 棵,求乙班增加人数后平均每8x小时植树多少棵 (4 分)Oy甲 乙y(棵)x(时)3 6 8120301119. (锦州)某商场购进一批单价为 50 元的商品,规定销售时单价不低于进价,每件的利润不超过 40%.其中销售量 y(件)与所售单价 x(元)的关系可以近似的看作如图 12 所表示的一次函数.(1)求 y 与 x 之间的函数关系式,并求出 x 的取值范围;(2)设该公司

24、获得的总利润(总利润=总销售额-总成本)为 w 元,求w 与 x 之间的函数关系式.当销售单价为何值时,所获利润最大?最大利润是多少?20 (清远)某饮料厂为了开发新产品,用 种果汁原料和 种果汁原料试制新型甲、乙两种饮料共 50AB千克,设甲种饮料需配制 千克,两种饮料的成本总额为 元xy(1)已知甲种饮料成本每千克 4 元,乙种饮料成本每千克 3 元,请你写出 与 之间的函数关系式yx(2)若用 19 千克 种果汁原料和 17.2 千克 种果汁原料试制甲、乙两种新型饮料,下表是试验的相关A数据;每千克饮料果汁含量果汁甲 乙A 0.5 千克 0.2 千克B 0.3 千克 0.4 千克请你列出

25、关于 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使 值最x y小,最小值是多少?21 (白银市)23鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:注:“鞋码”是表示鞋子大小的一种号码鞋长( cm)16192124鞋码( 号 )22283238(1)设鞋长为 x, “鞋码”为 y,试判断点( x, y)在你学过的哪种函数的图象上?12(2)求 x、 y 之间的函数关系式;(3)如果某人穿 44 号“鞋码”的鞋,那么他的鞋长是多少?22 (新疆)某公交公司的公共汽车和出租车每天从乌鲁木齐市出发往返于乌鲁木齐市和石河子市两地,出租车比

26、公共汽车多往返一趟,如图表示出租车距乌鲁木齐市的路程 (单位:千米)与所用时间y(单位:小时)的函数图象已知公共汽车比出租车晚 1 小时出发,到达石河子市后休息 2 小时,然x后按原路原速返回,结果比出租车最后一次返回乌鲁木齐早 1 小时(1)请在图中画出公共汽车距乌鲁木齐市的路程 (千米)与所用时间 (小时)的函数图象yx(2)求两车在途中相遇的次数(直接写出答案)(3)求两车最后一次相遇时,距乌鲁木齐市的路程y(千米)x(小时)15010050110 2 3 4 5 6 7 823 (江西)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有 25 分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他 3 倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段 、 分别表示父、子俩送票、取票过程中,ABO离体育馆的路程 (米)与所用时间 (分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车St和步行的速度始终保持不变):(1)求点 的坐标和 所在直线的函数关系式;BA(2)小明能否在比赛开始前到达体育馆?S(米)t(分)BO3 60015(第 21 题)A

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 初中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报