1、3.2.1 圆的对称性,?,复习提问:,1、什么是轴对称图形?我们在学过哪些轴对称图形?,如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形。如线段、角、等腰三角形、矩形、菱形、等腰梯形、正方形,2、我们所学的圆是不是轴对称图形呢?,圆的对称性,圆是轴对称图形吗?,如果是,它的对称轴是什么?你能找到多少条对称轴?,你是用什么方法解决上述问题的?,圆是中心对称图形吗?,如果是,它的对称中心是什么?你能找到多少个对称中心?,你又是用什么方法解决这个问题的?,想一想,圆是轴对称图形.,想一想,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴.,可利用折叠的方法即可解
2、决上述问题.,圆也是中心对称图形.,它的对称中心就是圆心.,用旋转的方法即可解决这个问题.,圆的对称性,圆的相关概念,圆上任意两点间的部分叫做圆弧,简称弧.,直径将圆分成两部分,每一部分都叫做半圆(如弧ABC).,读一读,连接圆上任意两点间的线段叫做弦(如弦AB).,经过圆心的弦叫做直径(如直径AC).,AM=BM,垂径定理,AB是O的一条弦.,你能发现图中有哪些等量关系?与同伴说说你的想法和理由.,作直径CD,使CDAB,垂足为M.,下图是轴对称图形吗?如果是,其对称轴是什么?,小明发现图中有:,由 CD是直径, CDAB,如图,小明的理由是:,连接OA,OB,则OA=OB.,在RtOAM和
3、RtOBM中,OA=OB,OM=OM,,RtOAMRtOBM.,AM=BM.,点A和点B关于CD对称.,O关于直径CD对称,当圆沿着直径CD对折时,点A与点B重合,CDAB,垂径定理的逆定理,AB是O的一条弦,且AM=BM.,你能发现图中有哪些等量关系?与同伴说说 你的想法和理由.,过点M作直径CD.,下图是轴对称图形吗?如果是,其对称轴是什么?,小明发现图中有:,由 CD是直径, AM=BM,平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.,垂径定理的应用,例1 如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OEC
4、D垂足为F,EF=90m.求这段弯路的半径.,解:连接OC.,老师提示: 注意闪烁的三角形的特点.,讨论,(1)过圆心 (2)垂直于弦 (3)平分弦 (4)平分弦所对优弧 (5)平分弦所对的劣弧,(3) (1),(2) (4) (5),(2) (3),(1) (4) (5),(1) (4),(3) (2) (5),(1) (5),(3) (4) (2),(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧 (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧,命题(1):平分弦(不是直径)的直径垂直于弦,并且平分弦
5、所对的两条弧,已知:CD是直径,AB是弦,并且CD平分AB,求证:CDAB,ADBD,ACBC,命题(2):弦的垂直平分线经过圆心,并且平分弦所对的两条弧,已知:AB是弦,CD平分AB, CD AB,求证:CD是直径,ADBD,ACBC,命题(3):平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧,已知:CD是直径,AB是弦,并且ADBD (ACBC)求证:CD平分AB,ACBC (ADBD)CD AB,垂直于弦的直径平分这条弦, 并且平分弦所对的两条弧。,推论(1),(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对 的两条弧,(2)弦的垂直平分线经过圆心,并且平分弦所对的
6、两条弧,(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧,垂径定理,记忆,判断,(1)垂直于弦的直线平分弦,并且平分弦所对的弧( ),(2)弦所对的两弧中点的连线,垂直于弦,并且经过圆心( ),(3)圆的不与直径垂直的弦必不被这条直径平分.( ),(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧( ),(5)圆内两条非直径的弦不能互相平分( ),挑战自我,(6)平分弦的直径,平分这条弦所对的弧 ( ),(7)平分弦的直线,必定过圆心 ( ),(8)一条直线平分弦(这条弦不是直径),那么这 条直线垂直这条弦 ( ),(9)弦的垂直平分线一定是圆的直径 ( ),(10)平分弧的直线,平分这条弧所对的 弦( ),(11)弦垂直于直径,这条直径就被弦平分 ( ),这节课有何收获?!,你,美丽的圆,课本习题3.2 第2题,作业,再见,