1、江西省吉安市凤凰中学 2014 高二数学 第 6 讲 函数的零点小题训练 新人教 A 版一、考试目标能力层级模块 内容A B C D备注函数的零点与方程根的联系 数学1 函数零 点的存在性定理 二、案例剖析与要点归纳例 1:函数 f(x)=2x+7 的零点为( )A.7 B. C. D.-727272函数 的零点为( )3y2xA. B .3 C .-1 或 3 D. 2 或 11要点 1:方程的根与函数的零点(1)函数零点概念:对于函数 )(Dxfy,把使得 _成立的实数 x叫做函数 )(Dxfy的零点。函数零点的意义:函数 )(xfy的零点就是方程 的 _,亦即函数)(xfy的图象与 轴交
2、点的_。即:方程 0)(xf有实数根 函数 )(xfy的图象与 轴有交点 函数 )(xfy有零点。练习:1、函数 的零点是_ _.2)(f2、如果二次函数 有两个不同的零点,则 的取值范围是( )3(mm)A B.(-2,6) C.-2,6 D. -2,6),6(,(例 2:1. 函数 的零点所在的区间是( )xf32)A B C D1,()0,1()1,0()2,1(2函数 的零点所在的区间为( )xfln)A.(0,1) B.(1,2) C.(2,3) D.(3,4)3. 设 ,用二分法求方程 在 内近似解的过程83(f 08x)2,1(中得 ,则方程的根 落在区 间( )0)5.(,).
3、,)ffA (1,1.25) B.(1.25,1.5) C.(1.5,2 ) D、不能确定为要点 2:零点存在性定理零点存在性定理:如果函数 )(xfy在区间 ,ba上的图象是连续不断的一条曲 线,并且有 _,那么函数 在区间 内有零点。即存在 ),(bac,使得_,这个 c也就是方程的根。(相邻两个 零点之间的函数值一定保持异号?)练习:1、函数 在区间-1,1内存在一个零点,则 的取值范围为13)axf_.2、方程 的解所在区间为( )lgA (0,1) B (1,2) C (2,3) D (3,+)3、求方程 的根的近似值,令 ,并xx3)6ln( xxf2)6ln()用计算器得到下表则
4、由表中的数据,可 得方程的一个近似解(精确到 0.1)为( )xx32)6ln(A. 1.2 B.1.3 C.1.4 D.1.5三、学考真题演练与达标练习1、 (09 年)已知函数 的图象是连续不断的,且有如下对应值表:()fxx1 2 3 4 5()f41 4 7在下列区间中,函数 必有零点的区间为( ).()fxA.(1,2) B. (2,3) C.(3,4) D. (4,5)4、 (13 年)已知函数 ( ) ;当 时,函数 的零点是_.2xxfR1fx5、用二分法求方程 在区间(2,4)上的实数根时,取中点 ,则下一个053 31有根区间是_.6、函数 有一个零点 2,那么函数 的零点是_.bxf)( xbg2)(7、方程 仅有一正实根 ,则 ( )130xA.(0,1) B.(1,2) C.(2,3) D.(3,4)补充思考题:1、函数 的零点个数为 。62lnxyx 1.00 1.25 1.375 1.50f(x)1.07940.2000-0.3661-1.00002、 (1)若函数 有且仅有一个零点,求实数 的值;1)(2xaf a(2)若函数 有 4 个零点,求实数 的取值范围。