1、富氩气体保护焊知识初探目 录摘 要 .1引 言 .2第一章 焊接的分类及特点 41.1焊接的分类 .41.2 焊接的特点 .5第二章 富氩气体保护焊和 CO2气体保护焊的性能特点比较分析 .72.1 富氩气体保护焊 .72.2 CO2气体保护焊 .112.3 富氩气体保护焊与 CO2气体保护焊的性能比较 12第三章 富氩气体保护焊和 CO2气体保护焊的焊接工艺分析比较 .133.1结构钢喷射过渡和短路过渡富氩混合气体保护焊焊接参数 133.2结构钢短路过渡和细颗粒状过渡 CO2气体保护焊焊接参数 .16第四章 富氩气体保护焊代替 CO2气体保护焊可行性分析及推广应用 .194.1 富氩气体保护
2、焊与 CO2气体保护焊的特点 194.2 工艺试验 19结 论 24致 谢 25参考文献 .26摘 要焊接是指工件(同种或异种材质) ,通过加热或加压或两者并用,并且用或不用填充材料,使工件达到原子间的建和而形成永久性连接的工艺过程。金属的焊接,按其工艺过程的特点分有熔焊、压焊和钎焊三大类。本文通过对富氩气体保护焊的焊接性能、焊接工艺及其焊接应用实例的分析掌握其特点,并将其与 CO2气体保护焊进行比较分析,富氩气体保护焊工艺性能优于 CO2气体保护焊,与 CO2气体保护焊相比,富氩气体保护焊焊缝成形好,飞溅大大减少,焊缝金属的综合性能优于 CO2气体保护焊,焊接成本接近。采用富氩气体保护焊可降
3、低焊缝的返修率,节约能源和焊接材料,提高焊接质量,减轻了工人的劳动强度,改善了操作环境,具有较好的综合效益,值得推广应用。从 20世纪末国家逐渐在各个行业推广自动焊的基础焊接方式气体保护焊,来取代传统的手工电弧焊,应用尤为广泛的富氩气体保护焊. 引 言焊接制造是一门理论和实践性较强的综合性技术。富氩气体保护焊可适用于大部分主要金属,包括碳钢、合金钢。富氩气体保护焊可采用短路过渡、喷射过渡和脉冲喷射过渡进行焊接,能获得稳定的焊接工艺性能和良好的焊接接头,可用于各种位置(平焊、立焊、横焊和仰焊以及全位置焊)的焊接,尤其适用于碳钢、合金钢和不锈钢等黑色金属材料的焊接。进入 21世纪,随着科学技术突飞
4、猛进的发展,焊接结构得到了越来越广泛的使用,焊接方法也向着多元化的方向发展,这就对焊接效率提出了更高的要求。传统富氩气体保护焊焊接工艺最高送丝速度小于 18 m/min,最高焊接速度低于 18m/min,所以为了提高生产效率,进一步提高焊接速度成为近年来焊接领域研究的热点之一。近年来,我国科技工作者正逐步加大对高速富氩气体保护焊技术的研究并取得了一些重要的成果,但客观的说在高速、高效气体保护焊接工艺与国外先进国家相比仍存在较大差距。因此推动高效、高速富氩气体保护焊方法的研究和应用具有重要的意义。 焊接生产率的提高主要有两个途径:一是薄板焊接时焊接速度的提高;二是中、厚板焊接时熔敷率的提高。为提
5、高焊接速度,基本的出发点是速度提高的同时增大焊接电流,以维持焊接热输人大致不变。但焊接电流的提高会造成电弧压力的显著增加。过大的电弧压力导致熔池液面的剧烈变形,使作用于熔滴和熔池的电弧力急剧增加破坏焊接过程的稳定性并使母材热输入高而导致焊缝组织变差、焊接变形变大,造成很多焊接缺陷,咬边和驼峰焊道是最常见高速焊接焊缝成形缺陷。因此为了获得稳定的高速富氩气体保护焊过程 ,必须从控制熔滴过渡、 稳定熔池流态、合理分配焊接热输入等方面采取有效措施。目前,在此基础上发展了多种高速熔化极气体保护电弧焊焊接方法,很多已开始应用于实际生产中。 第一章 焊接的分类及特点1.1 焊接的分类1.1.1 焊接的定义:
6、焊接是指被焊(同种或异种的材质) ,通过加热或加压或两者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程。1.1.2 焊接的种类特性:金属的焊接,按其工艺过程的特点分有熔焊、压焊和钎焊三大类. 熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。富氩气体保护焊就是熔焊的一种。熔焊时,热源将待焊工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。 在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂
7、纹等缺陷,恶化焊缝的质量和性能。 为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。 压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。 钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润
8、湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。1.2 焊接的特点(1)焊接是通过加热或加压,或者两者并用,并且用或不用填充材料,使焊件达到原子结合的一种加工方法。所以是一种把分离的金属件连接成为不可拆卸的一个整体的加工方法。在被广泛应用以前,不同拆卸连接的主要方法是铆接。与铆接相比,焊接具有节省金属、生产率高、致密性好、操作条件好、易于实现机械化和自动化。所以现在焊接已基本取代连接铆接。(2)焊接的另一个特点是可以化大为小、以小拼大。在制造大型机件与结构件或复杂的机器零件时,可以化大为小、化复杂为简单的方法准备坏料,用铸-焊、锻-焊联合工艺,用小型铸、锻设备生产大或复杂
9、零件。例如我国生产的大型水压机立柱或发电机主轴等。(3)焊接可以制造双金属结构。用焊接方法可制不同材料的复杂层容器,对焊不同材料的零件或工具(如较粗的钻头,就是用 45号作钻柄,高速钢作钻头的切削部分)等。所以,焊接是进行金属构件、机器零件等的重要加工方法,如桥梁、建筑构件、船体、锅炉、车箱、容器等。此外,焊接还是修补铸、锻件的缺陷和磨损零件的重要方法。国外专家认为:“到 2020年焊接仍将是制造业的重要加工工艺。它是一种精确、可靠、低成本,并且是采用高科技连接材料的方法。目前还没有其他方法能够比焊接更为广泛地应用于金属的连接,并对所焊的产品增加更大的附加值。随着数字化技术日益成熟,数字焊机、
10、数字化控制技术业已稳步进入市场。三峡工程、西气东输工程、航天工程、船舶工程等国家大型基础工程,有效地促进了先进焊接特别是焊接自动化技术的发展与进步。汽车及零部件的制造对焊接的自动化程度要求日新月异。我国焊接产业逐步走向“高效、自动化、智能化” 。目前我国的焊接自动化率还不足 30%,同发达工业国家的 80%差距甚远。从 20世纪末国家逐渐在各个行业推广自动焊的基础焊接方式气体保护焊,来取代传统的手工电弧焊,应用尤为广泛的富氩气体保护焊,现已初见成效。可以预计在未来的 10年,国内自动化焊接技术将以前所未有的速度发展。第二章 富氩气体保护焊和 CO2气体保护焊的性能特点比较分析2.1 富氩气体保
11、护焊2.1.1 富氩气体保护焊的定义使用焊丝作为熔化电极,采用氩气或富氩混合气体作为保护气体的电弧焊接方法叫富氩气体保护焊。2.1.2 富氩气体保护焊的特点富氩气体保护焊可适用于大部分主要金属,包括碳钢、合金钢。富氩气体保护焊具有下列特点: 焊接成本低,其综合成本大概是手工电弧焊的 1/2。 生产效率高 可以使用较大的电流密度(200A/mm 2左右) ,比手工电弧焊(1020A/mm 2左右)高得多,因此熔深比手弧焊高 2.23.8 倍,对 10mm以下的钢板可以不开坡口,对于厚板可以减少坡口加大钝边进行焊接,同时具有焊丝熔化快,不用清理熔渣等特点,效率可比手弧焊提高 2.54 倍。 焊后变
12、形小 因气体保护焊的电弧热量集中,加热面积小,Ar+CO 2气流有冷却作用,因此焊件焊后变形小,特别是薄板的焊接更为突出。 抗锈能力强 气体保护和埋弧焊相比,具有较高的抗锈能力,所以焊前对焊件表面的清洁工作要求不高,可以节省生产中大量的辅助时间。 富氩焊接可以克服由于纯 CO2气体保护焊的缺点,因 CO2气体本身具有较强的氧化性,因此在焊接过程中会引起合金元素烧损,产生气孔和引起较强的飞溅,而在富氩气氛中飞溅问题得到有效控制,可以节省清渣费用减少清渣剂的使用并且可以节约一部分电耗。富氩气体保护焊可采用短路过渡、喷射过渡和脉冲喷射过渡进行焊接,能获得稳定的焊接工艺性能和良好的焊接接头,可用于各种
13、位置(平焊、立焊、横焊和仰焊以及全位置焊)的焊接,尤其适用于碳钢、合金钢和不锈钢等黑色金属材料的焊接。2.1.3 富氩气体保护焊的常用活性混合气体及其适用范围 Ar+O 2这种混合气体具有一定的氧化性,一方面能降低液体金属的表面张力,具有熔滴细匀、电弧稳定、焊缝成形规则等特点;另一方面由于保护气体具有氧化性,可以在熔池表面不断地生成氧化膜,生成的氧化物可以降低电子逸出功,故能稳定阴极斑点,克服阴极斑点飘忽不定的缺点,增加电弧的稳定性,同时也有利于增加液体金属的流动性,细化熔滴,改善焊缝成形。但是焊接不锈钢时,氧的加入量不能太高,一般控制在 1%5%(体积分数)范围内,否则合金元素氧化烧损多,引
14、起夹渣和飞溅的问题。焊接低碳钢和低合金钢时,在 Ar中 O2的加入量可达 20%(体积分数) 。 Ar+CO 2在 Ar中加入 CO2的体积分数15时,其作用与 Ar中加入 25(体积分数)的 O2相似。若加入 CO2的体积分数25,其工艺特征就接近纯 CO2气体保护焊。但飞溅相对较少,可以改善呈蘑菇状的焊缝截面形状,以减少气孔的生成。这种混合气体有电弧稳定、飞溅小、容易获得轴向射流过渡等优点,又因其具具有氧化性,能稳定电弧,有较好的熔深和焊缝成形,焊接质量好,可用于射流过渡,短路过渡及脉冲过渡形式的熔化极气体保护焊。目前,广泛应用于焊接低碳钢及合金钢,也可焊接不锈钢。在 Ar中加入 CO2会
15、提高临界电流,其熔滴过渡特性随着 CO2量的增加而恶化,飞溅也增大。通常 CO2加入量在530(体积分数)范围内。 Ar+ CO 2 + O2 在 Ar中加入适量的 CO2和 O2焊接低碳钢、低合金钢,比采用上述两种混合气体作气体保护焊接的焊缝成形、接头质量、金属熔滴过渡和电弧稳定性好。在熔化极及钨极气体保护焊中,常见的焊接用保护气体及其使用范围见表21。表 21 焊接用保护气体及其使用范围2.2 CO2气体保护焊2.2.1 CO2气体保护焊的定义被焊材料 保护气体(体积分数) 工件厚度/mm 特点100%Ar 025 较好的熔滴过渡,电弧稳定,飞溅小35%Ar+65%He 2575 热输入比
16、纯氩大,改善 Al-Mg合金的熔化特性,减少气孔铝及铝合 金25%Ar+75%He 76 热输入高,减价熔深,减少气孔,适用于焊接厚铝板镁 100%Ar 良好的清理作用钛 100%Ar 良好的电弧稳定性,焊缝污染小,在焊接区域的背面要求惰性气体保护以防空气危害100%Ar 3.2 能产生稳定的射流过渡,良好的润湿性铜及铜合金 Ar+50%70%He 热输入比纯氩大,可以减少预热温度100%Ar 3.2 能产生稳定的射流过渡、脉冲射滴过渡及短路过渡镍及镍合金 Ar+15%20%He 热输入高于纯氩99%Ar+1% O2 改善电弧稳定性,用于射流过渡及脉冲射滴过渡,能较好控制熔池,焊缝形状良好,焊
17、较厚的材料时产生的咬边较小不锈钢98%Ar+2% O2 较好的电弧稳定性,可用于射流过渡及脉冲射滴过渡,焊缝形状良好,焊接较薄工件比加1%(体积分数)O 2 的混合气体有更高的速度低合金高强度钢 98%Ar+2% O2 最小的咬边和良好的韧性,可用于射流过渡及脉冲射滴过渡Ar+3%5% O2 改善电弧稳定性,用于射流过渡及脉冲射滴过渡,能较好控制熔池,焊缝形状良好,咬边较小,比纯氩的焊速更高Ar+10%20% O2 电弧稳定,克用于射流过渡及脉冲射滴过渡,焊缝成形好,飞溅较小,可高速焊接80%Ar+15% CO2+5% O2 电弧稳定,可用于射流过渡及脉冲射滴过渡,焊缝成形好,熔深较大低碳钢6
18、5%Ar+26.5%He+8% CO2 +0.5% O2 电弧稳定,尤其在大电流时可得到稳定的喷射过渡,能实现大电流下的高熔敷率,1.2 焊丝的最高送丝速度可达 50m/min,焊缝冲击韧性度好使用焊丝作为熔化电极,采用 CO2气体作为保护气体的电弧焊接方法叫 CO2气体保护焊。2.2.2 CO2气体保护焊的特点 CO 2气体保护焊穿透能力强,焊接电流密度大(100300A/m 2) ,变形小,生产效率比焊条电弧焊高 13 倍。 CO 2气体便宜,焊前对工件的清理可以从简,其焊接成本只有焊条电弧焊的40%50%。 焊缝抗锈能力强,含氢量低,冷裂纹倾向小。 焊接过程中金属飞溅较多,特别是当工艺参
19、数调节不匹配时,尤为严重。 不能焊接易氧化的金属材料,抗风能力差,野外作业时或漏天作业时,需要有防风措施。 焊接弧光强,注意弧光辐射。 CO2气体是一种氧化性气体,在高温下分解,具有强烈的氧化作用,把合金元素烧损或造成气孔和飞溅等。解决 CO2氧化性的措施是脱氧,具体做法是在焊丝中加入一定量脱氧剂。实践表明采用 Si-Mn脱氧效果最好,所以目前广泛采用 H08Mn2SiA、H10Mn2Si 等焊丝。 2.2.3 CO2气体保护焊的常用保护气体用于焊接的 CO2气体,其纯度要求99.5%,通常 CO2是以液态装入钢瓶中,容量为 40L的标准钢瓶可灌入 25Kg的液态 CO2, 25Kg 的液态
20、CO2约占钢瓶容积的 80%,其余 20%左右的空间充满气化的 CO2。气瓶压力表上所指的压力就是这部分饱和压力。该压力大小与环境温度有关,所以正确估算瓶内 CO2气体储量是采用称钢瓶质量的方法。 (备注:1Kg 的液态 CO2可汽化 509LCO2气体)CO 2气瓶外表漆黑色并写有黄色字样。CO 2气体含水量较高,焊接时候容易产生气孔等缺陷,在现场减少水分的措施为:1)将气瓶倒立静置 12 小时,然后开启阀门,把沉积在瓶口部的水排出,可放23 次,每次间隔 30分钟,放后将气瓶放正。2)倒置放水后的气瓶,使用前先打开阀门放掉瓶上面纯度较低的气体,然后在套上输气管。3)在气路中设置高压干燥器和
21、低压干燥器,另外在气路中设置气体预热装置,防止 CO2气中水分在减压器内结冰而堵塞气路。2.3 富氩气体保护焊与 CO2气体保护焊的性能比较2.3.1 焊接方法与焊接效果,见表 2-2。表 2-2 焊接方法与焊接效果2.3.2 CO2气体保护焊/富氩气体保护焊焊接方法的优缺点,见表 2-3。表 2-3 CO2气体保护焊/富氩气体保护焊焊接方法的优缺点第三章 富氩气体保护焊和 CO2气体保护焊的焊接工艺分析比较焊接方法 保护气体 焊缝表面 飞溅量 熔深气体保护焊气体 稍微粗糙 较大 深氩气 气体 平滑 小 较深富氩气体保护焊 氩气氧气 非常平滑 微量或无 浅优点 缺点CO2气体保护焊的优点:焊接
22、速度快、熔池深、熔敷效率高、一种焊丝可适用多种板厚、焊接质量好、焊后变形小、一种焊丝可适用多种材质、可实现全位置焊接、成本低,效率高、易操作,易实现自动化。有飞溅,焊缝外观稍差、适用材质仅限于钢系列。富氩气体保护焊除具有 CO2气体保护焊的优点之外:焊缝外观美观、飞溅少、双面成形焊接、全位置焊接容易、适合高速焊接。适用材质仅限于钢系列、保护气体较贵。3.1 结构钢喷射过渡和短路过渡富氩混合气体保护焊焊接参数3.1.1 结构钢喷射过渡富氩混合气体保护焊焊接参数,见表 3-1。表 3-1 结构钢喷射过渡富氩混合气体保护焊焊接参数板厚/mm接头形式间隙b/mm钝边p/mm焊丝直径/mm送丝速度/(m
23、m/s)电弧电压/v焊接电流/A焊接速度/(mm/s)焊道数1 1.6 0.89 148159 2627 190200 811 13.24 0.89 159169 2627 200210 1315 11 4.8 1.6 7882 2627 310320 35 12 2.4 1.6 7276 2526 290300 57 22 2.4 1.1 169180 2931 320330 79 24 1.6 99104 2728 360370 68 16.44 1.1 180190 3032 330340 68 12 2.4 1.6 9195 2627 340350 57 23 1.6 2.4 1.1
24、154163 2930 300310 57 23 1.6 2.4 1.6 7276 2526 290300 46 29.54 1.6 8791 2627 300340 46 22 1.6 8289 2627 320330 79 43 1.6 2.4 1.6 7882 2627 310320 79 412.74 一 一 1.6 99104 2728 360370 68 33 1.6 2.4 1.6 8289 2627 320330 58 415.94 一 一 1.6 9195 2728 340350 58 419.1 3 1.6 2.4 1.6 8289 2627 320330 57 4注:坡口
25、角 =4560。保护气体成分(体积分数,%):80%Ar+20%CO 2 或 95%Ar+5%O2,保护气体流量20 25L/min。3.1.2 结构钢短路过渡富氩混合气体保护焊焊接参数见,表 3-2。表 3-2 结构钢短路过渡富氩混合气体保护焊焊接参数4 一 一 1.6 99104 2728 360370 46 6板厚/mm焊接位置接头形式间隙b/mm钝边p/mm焊丝直径/mm送丝速度/(mm/s)电弧电压/v焊接电流/A焊接速度/(mm/s)焊道数0.64 F、H、V、O 1、4 0 0.76 4751 1314 4550 8110.94 F、H、V、O 1、4 0 0.76 4757 1
26、314 5560 81111 0.79 7276 105110 1113H4 76801617 110115 10121 0.79 5063 8590 581.6 V、O4 0.896166 1516 9095 10120.89 112116 1820 150155F1.1 6368 1819 160165681 0.799397 1718 130135 58H 4 114118 1820 155160 10121 0.79 1718 583.2V、O4 0.899397 1719 130135 8101 4.8 610F2 2.4 1.69397 1920 5104 8995 1921210
27、21568H 1 4.8 1.17680 1820 175185 572 2.4 8589 1718 120125 464.8V、O4 1.6 0.89 102106 1719 140145 581F 2.4 1.6 99104 2021 220225 57 22 180190 1820 175185 2H4 1.1235245 2021 220225 35 16.4V、H 2 2.4 1.60.898589 1718 120125 232注:坡口形式同表 3-1,坡口角 =4560。保护气体成分(体积分数,%):75%Ar+25%CO 2 或 50%Ar+50%CO2,保护气体流量16 20
28、L/min。焊接位置:F平焊;H横焊;V立焊(泛指向上立焊);O仰焊。本表引自国外资料,一些尺寸数据均由英制换算得到。3.2 结构钢短路过渡和细颗粒状过渡 CO2气体保护焊焊接参数CO2气体保护焊时,由于熔滴过渡的不同形式,需采用不同的焊接工艺参数 :(1)短路过渡时的工艺参数 短路过渡焊接采用细丝焊,常用焊丝直径为0.61.2,随着焊丝直径增大,飞溅颗粒都相应增大。短路过渡焊接时,主要的焊接工艺参数有电弧电压、焊接电流、焊接速度,气体流量及纯度,焊丝深出长度。 1)电弧电压及焊接电流 电弧电压是短路过渡时的关键参数,短路过渡的特点是采用低电压。电弧电压与焊接电流相匹配,可以获得飞溅小,焊缝成
29、形良好的稳定焊接过程。1.2 的一般参数:电压 19V;电流 120135A。 2)焊接速度 随着焊接速度的增加,焊缝熔宽、熔深和余高均减小。焊速过高,容易产生咬边和未焊透等缺陷,同时气体保护效果变坏,易产生气孔。焊接速度过低,易产生烧穿,组织粗大等缺陷,并且变形增大,生产效率降低。因此,应根据生产实践对焊接速度进行正确的选择。通常半自动焊的速度不超过 0.5m/min,自动焊的速度不超过 1.5m/min。 3)气体的流量及纯度 气体流量过小时,保护气体的挺度不足,焊缝容易产生气孔等缺陷;气体流量过大时,不仅浪费气体,而且氧化性增强,焊缝表面上会形成一层暗灰色的氧化皮,使焊缝质量下降。为保证
30、焊接区免受空气的污染,当焊接电流大或焊接速度快,焊丝伸出长度较长以及室外焊接时,应增大气体流量。通常细丝焊接时,气体流量在 1525L/min 之间。CO 2气体的纯度不得低于 99.5%。同时,当气瓶内的压力低于 1Mpa,就应停止使用,以免产生气102106 1819 140145 57O 4 9397 1719 130135 23 1孔。这是因为气瓶内压力降低时,溶于液态 CO2中的水分汽化量也随之增大,从而混入 CO2气体中的水蒸气就越多。 4)焊丝伸出长度 由于短路过渡均采用细焊丝,所以焊丝伸出长度上所产生的电阻热影响很大。伸出长度增加,焊丝上的电阻热增加,焊丝熔化加快,生产率提高。
31、但伸出长度过大时,焊丝容易发生过热而成段熔断,飞溅严重,焊接过程不稳定。同时伸出增大后,喷嘴与焊件间的距离亦增大,因此气体保护效果变差。但伸出长度过小势必缩短喷嘴与焊件间的距离,飞溅金属容易堵塞喷嘴。合适的伸出长度应为焊丝直径的 1012 倍,细丝焊时以 815mm 为宜。(2)细颗粒状过渡时的工艺参数 细颗粒状过渡大都采用较粗的焊丝,1.2以上。表 3-3给出几种直径焊丝的参考规范 :表 33 细颗粒状过渡时的工艺参数第四章 富氩气体保护焊代替 CO2气体保护焊可行性焊丝直径(mm) 1.2 1.6 2.0最低电流(A) 300 400 500电弧电压(V) 3445分析及推广应用4.1 富
32、氩气体保护焊与 CO2气体保护焊的特点 CO 2气体保护焊。电弧稳定性差,熔滴呈非轴向过渡,飞溅大,焊缝成形差,焊丝合金过渡系数降低(约为8%12%,焊丝熔化后以飞溅形式浪费掉) ,焊缝金属冲击韧性低等。 富氩气体保护焊(Ar+ CO 2混合气体保护焊) 。显著提高电弧稳定性,熔滴细化,过渡频率增加,飞溅大大减少(飞溅率为1%3%,采用射流过渡时几乎无飞溅) ,焊缝成形美观。此外,采用混合气体保护还可以改善熔深形状,未焊透和裂纹等缺陷大大减少,并能提高焊缝金属的性,减少焊后清理工作量,节能降耗,改善操作环境。4.2 工艺试验 试验材料和设备试板材料为工程机械常用焊接材料:Q345A、Q235-
33、A;焊丝型号及规格:ER50-6,焊接设备:NBC-500 CO 2气体保护焊机;试板尺寸为350mm250mm16mm,如图41所示。 试验方法分别采用富氩气体保护焊、CO 2气体保护焊对 Q345A、Q235-A 试板进行焊接,焊接时带坡口侧焊缝分3层焊接完成,背面用碳弧气刨清根34mm,再补焊一层,焊接规范见表41,试验结果见表42、表43。图41 试板尺寸图表41 焊接规范表 试验结论a. 混合气体保护焊在焊缝熔池形式上消除了 CO2焊的窄而深的焊缝,减少了焊缝的未熔合和裂纹倾向。 表42 熔敷金属化学成分(%)焊接层数 焊接电流 I/A 焊接电压 U/V 气体流量Q/Lmin-1 焊
34、接速度v/mmmin-11 260280 2830 1520 3003502 300320 3234 1520 3003503 300320 3234 1520 3003504/背面 300320 3234 1520 300350保护气体类型 (C) (Si) (Mn) (S) (P) (Cu)CO2 0.093 0.54 0.88 0.015 0.023 0.02980%Ar+20%CO2 0.077 0.42 1.15 0.013 0.02 0.03表43 熔敷金属力学性能实验b. 焊接飞溅大量减少,采用射流过渡时几乎无飞溅,提高了焊材利用率,减少了飞溅的清理工作。c. 焊缝表面光滑,成形
35、美观,焊渣在焊缝表面收缩成扁豆状,容易去除,减少了大量焊缝修磨工作量。d. 焊缝金属中 Si、Mn 含量比 CO2时的高,S、P、Cu 杂质元素基本相似,C含量有所降低,即 Si、Mn 元素的烧损量相对于 CO2的降低31%34%,由于保护气氛中碳的降低,脱碳率为17.6%。e. 熔敷金属的屈服强度和抗拉性能比 CO2时的均有微量降低,而延伸率和冲击功均有较大提高,即综合性能有所提高。混合气体的推广应用在工艺试验的基础上,在外观质量要求较为严格的驾驶室上进行应用富氩气体保护焊工艺,表44、表45、表46分别从工艺性能、力学性能和焊接成本对两种焊接方法进行对比。 焊接方法 材质 s/MPa b/
36、MPa /% Ak/J CO2气体保护焊 Q235-A 426 582 29 157.5 161CO2气体保护焊 Q235-A 445 578 27 145 142.5CO2气体保护焊 Q345A 453 580 29.3 139 134CO2气体保护焊 Q345A 446 574 28 136 132富氩气体保护焊 Q235-A 425 570 31 184 184富氩气体保护焊 Q235-A 420 555 29 184 184富氩气体保护焊 Q345A 442 575 32 162.5 155富氩气体保护焊 Q345A 439 577 30 157 160保护气体类型 焊接飞溅 脱渣性
37、烟尘量 焊缝外观 内在质 量 焊后清 理表44 工艺性能及焊接质量表45 焊缝接头力学性能表46 焊接一台驾驶室耗材对照表100%CO2 大颗粒 差 一般 粗糙 一般 量大20%Ar+80%CO2 很少或无 一般 少 熔宽均匀、 光洁平滑 良好 极少保护气体用量 焊丝用量焊接方法种类 焊前质量 m/kg 焊后质量 m/kg 用量/kg 消耗/元 总消耗 /元 焊前质量 m/kg 焊后质量 m/kg 消耗/元Ar 8.87 4.51 4.36 29.3混合气体CO2 24 21.3 2.7 3.1532.45 20 14.1 46.6CO2 CO2 24 8 16 18.7 18.7 20 13.5 51.3焊接方法 种类 防飞溅剂/元 砂轮片/元 工时与耗电/元 消耗/元混合气 Ar、CO 2 0 3 0.9 83CO2 CO2 6 12 3.5 91.5保护气体类型 b/MPa s/MPa /% 断裂位置100%CO2 476 344 12 母材20%Ar+80%CO2 528 335 16 母材冷弯 100 室温冲击韧性 vW/kJ 硬度 HV保护气体类型面弯 背弯 焊缝 HAZ 焊缝 HAZ100%CO2 合格 合格 50 46 177 13620%Ar+80%CO2 合格 合格 65 60 160 124