1、编写时间 月 日执行时间 月 日主备人:黄鹏 执行人: 总序第 个教案课题1.1 直角三角形的性质和判定()共 课时第 2 课时课型 新授教学目标1、掌握“ 直角三角形斜边上的中线等于斜边的一半 ”定理以及应用。2、巩固利用添辅助线证明有关几何问题的方法。3、通过图形的变换,引导学生发现并提出新问题, 进行类比联想,促进学生的思维向多层次多方位发散。培养学生的创新精神和创造能力。4、从生活的实际问题出发,引 发学生学习数学的兴趣。从而培养学生发现问题和解决问题能力。重点难点直角三角形斜边上的中线性质定理的应用。直角三角形斜边上的中线性质定理的证明思想方法。教学策略 观察、比较、合作、交流、探索
2、教 学 过 程 课前、课中反思(一) 引入:如果你是设计师:(提出问题)2008 年将建造一个地铁站,设计师设想把地铁站的出口建造在离附近的三个公交站点 45 路、13 路、 23 路的距离相等的位置。而这 三个公交站点的位置正好构成一个直角三角形。如果你是设计师你会把地铁站的出口建造在哪里?(通过实际问题引出直角三角形斜边上的中点和三个顶点之间的长度关系,引发学生的学 习兴趣。 )动一动 想一想 猜一猜 (实验操作)请同学们分小组在模型上找出那个点,并说出它的位置。请同学们测量一下这个点到这三个顶点的距离是否符合要求。通过以上实验请猜想一下,直角三角形斜边上的中线和斜边的长度之间有什么关系?
3、(通过动手操作找到那个点,通过测量的结果让学生猜测斜边的中线与斜边的关系。 )(二) 新授:提出命题:直角三角形斜边上的中线等于斜边的一半证明命题:(教师引导,学生讨论,共同完成 证明过程)推理证明思路: 作点 D1 证明所作点 D1 具有的性EDCBA质 证明点 D1 与点 D 重合应用定理:例 1、已知:如图,在ABC 中,B=C,AD 是 BAC 的平分线,E、 F 分别AB、AC 的中点。求证:DE=DF 分析:可证两条线段分别是两直角三角形的斜边上的中线,再证两斜 边相等即可证得。(上一题我们是两个直角三角形的一条较长直角边重合,现在我们将图形变化使斜边重合,我 们可以得到哪些结论
4、?)练习变式:1、 已知:在ABC 中,BD 、CE 分别是边 AC、AB 上的高,F 是 BC 的中点。求证:FD=FE练习引申:(1)若连接 DE,能得出什么结论?(2)若 O 是 DE 的中点, 则 MO 与 DE 存在什么结论吗?上题两个直角三角形共用一条斜边,两个直角三角形位于斜边的同侧。如果共用一条斜边 ,两个直角三角形位于斜边的两侧我们又会有哪些结论? 2、已知:ABC=ADC=90,E 是AC 中点。你能得到什么 结论 ?例 2、求证:一个三角形一边上的中线等于这一边的一半,那么 这个三角形是直角三角形。P4练习 P4 2(三)、小结:通过今天的学习有哪些收获?(四)、作业:P7 习题 A 组 1、2课后反思FED CBAOFEDCBA