收藏 分享(赏)

企业招聘问题_数学建模论文.doc

上传人:无敌 文档编号:602817 上传时间:2018-04-14 格式:DOC 页数:23 大小:1.19MB
下载 相关 举报
企业招聘问题_数学建模论文.doc_第1页
第1页 / 共23页
企业招聘问题_数学建模论文.doc_第2页
第2页 / 共23页
企业招聘问题_数学建模论文.doc_第3页
第3页 / 共23页
企业招聘问题_数学建模论文.doc_第4页
第4页 / 共23页
企业招聘问题_数学建模论文.doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、1招聘问题摘要人才战略是当今社会企业的主要竞争战略,为了企业长期的建设与发展,在人员招聘的问题上则需要很好的斟酌与推敲。本文针对人员招聘过程当中经常遇到的某些问题,建立了模型来进行研究,一定程度上很好的解决了这些问题。针对问题 1,我们首先对所给数据进行了分析,建立起了均值插补模型来解决问题。先除去专家没有给出评分的某些应聘者,将剩下应聘者的评分数据作为基数,运用 计算出每个专家给应聘者评分平均值。excl为了验证所得数据的可靠性,我们还对各组数据进行了区间估计。假设应聘者的评分数据服从正态分布,根据统计理论,并用 软件求出均值的置信sp区间求出置信区间,最终确定了所缺数值为: 8073,52

2、,51,9 xx,针对问题 2,考虑到面试者的表现,同时也考虑到数据计算的简洁性,以及面试场上能力好坏的直接反映以及反差的体现,本文决定直接求取五位专家分数的平均分。然后运用了 对求得的平均分进行排序。若平均分相同的话,ecl则计算出方差来比较发挥的稳定程度,最终得出录取排序,详见附表。针对问题 3,本文分别从平均数、方差、偏度三个方面来进行分析,忽略每个专家对各个招聘者的主观评价,客观性评价每位招聘者。之后,运用软件直接求出具体的数值,然后进行比较。最终得出,五位评委的严格程sp度依次为:甲丁乙戊丙针对问题 4,同样采取平均分与方差相结合研究的方法,规定进入第二次面试的人数占总体的 15%,

3、85 分向上为优,然后运用 对求得的平均分进行excl排序,再根据方差选择出进入第二次面试的为:39、19、51、47、5、4、40、87、66、91、64、69、100、18、86、53。针对问题 5,本文将各专家评分的标准差、均值、偏度作为决策目标的属性,且要求该三个指标越高越好。然后,运用 法,通过求解该问题的规topsi范化加权目标的理想解,构建决策矩阵,对数据进行归一化处理,并得出归一化矩阵。之后,利用公式,对归一化矩阵进行求解,最终求得每一位评委分数的 值,经过比较发现:乙丁戊甲丙。iC所以,我们最终选“乙、丁、戊”三位专家组成第二轮应聘的专家小组。关键词 均值插补法 区间估计 法

4、 归一化处理topsi2一、问题重述某单位组成了一个五人专家小组,对 名应试者进行了招聘测试,各位专10家对每位应聘者进行了打分(见附表) ,请你运用数学建模方法解决下列问题:(1)补齐表中缺失的数据,给出补缺的方法及理由。(2)给出 名应聘者的录取顺序。01(3)五位专家中哪位专家打分比较严格,哪位专家打分比较宽松。(4)你认为哪些应聘者应给予第二次应聘的机会。(5)如果第二次应聘的专家小组只由其中的 位专家组成,你认为这个专家组3应由哪 3 位专家组成。二、问题分析当今的社会,无论哪家企业对人才的需求都是迫切的,不得不说现在的企业的竞争已经逐步转向了人才的竞争。也是因此,单位在面试求职者的

5、时候,准确科学的判断其能力就显得尤其的重要,因为这将决定着企业未来发展和建设。这样,每一位专家的评分的科学性、客观性就显得会尤其的重要。而我们的问题则是主要集中来研究专家们评分的具体细则的。第一个问题,很明显的就可以看出,其目的就是要考察对数据的插补能力。那么,我们就可以有多种的插补方法可以选择,当然,本文最终选择了均值插补法,并且进行区间估计来验证其可靠性。第二个问题,则是对数据排序选择的应用。同样的分数,我们将怎么样选择、排序,对此,本文计划用均值与方差相结合的方法来排序。第三问则是要看评判的标准了,最简单也是最常用的,平均值、方差、偏度的结合,建立起来的评判模型,则可以很快的帮助我们判断

6、出来。第四问相对来说主观的东西比较多一点,比如选择几人能够进入第二次的面试。根据一定的比例,本文最终确定了人数及方案。之后,利用 对数据excl进行排序,选择平均分较高的进入,若平均分相等,则再考察方差,选择发挥稳定的进入。第五问经过分析可以看出是要对有限方案中的最优方案的选择,很快就可以看出使用 法,对有限方案多目标决策进行分析,然后分别计算诸评价topsi对象与最优方案和最劣方案的距离,获得各评价对象与最优方案的相对接近程度,以此作为评价优劣的依据。三、模型的假设1.所有评分数据服从正态分布。2.所有的专家均能够客观、理性、科学的给出分数。3.每一位面试者均是独立的个体,没有内定的情况存在

7、。4.面试的专家均拥有足够的专业能力、合理的知识结构、科学的工作组合。5.假定该公司的评判标准是 分向上是优秀,进入第二次面试的人数大概占总853人数的 左右。%15四、符号说明符号 说明)3,21(,nx分组后各组样本数据的平均值ij求和公式ijx每一位评委给每一位面试者的分数总体的未知参数(置信区间))5,4321(ny专家所给分数的平均数分数方差ijZ第 个目标对第 个方案的规范化加权值jiiC可行解对于理想解的相对接近度五、模型的建立与求解缺失数据是数据分析中无法回避的难题之一,由于缺失数据涉及范围很广泛,给出一个明确的界定是很困难的,但从来源看,既包括实验中的缺失数据,也包括调查中的

8、缺失数据;从性质看,既包含没有搜集到的数据,也包括搜集后遗失(或剔除)的数据。 1而今天要着手解决的问题,正是诸如此类的对缺失数据进行补充的问题。当然,对补充后的数据进行进一步的分析探讨,也是本文所要阐述的重点。下面则是我们对本题的研究过程与求得的结果。5.1 问题一模型的建立与求解5.1.1 研究方法的选择与确定在出现数据缺失的时候,传统的方法是只保留完全记录,丢弃含有缺失项的记录。但这样做不仅会产生偏倚,甚至会得出误导性的结论,同时丢失大量信息,造成很大的浪费。 2目前,插补法是处理数据缺失的一种常用的方法。在插补法中又分为:演绎估计法、均值插补法、随机插补法等等多种方法,而我们根据本题所

9、给出的数据的特征,决定采用均值插补法来补缺所缺失的数据。4然后再进行验证,通过求得缺失数所对应的置信区间,对比可得估计平均数是否满足要求。5.1.2 均值插补法模型的建立与求解首先,对所给样本数据进行处理。将样本数据分为若干组,使组内各单位的主要特征相似,然后分别介绍各组目标变量的均值,将各组均值作为组内所有缺失数据项的替补值。经过讨论研究,我们将数据分为如下三组:第 组:不考虑第 位面试者专家甲的分数,将其余 位的成绩看成是一组。1910第 组:不考虑第 位面试者专家乙的分数,将其余的 位的成绩看成一组。225第 组:不考虑第 位面试者专家丙的分数,将其余的 位的成绩看作一组。38而接下来,

10、将分别求出三组数据的平均数作为每一组所忽略的数据值。首先是第一组,依据公式: 10)(810iiixx利用 软件,求得 位面试者成绩的平均值为:sp107其次是第二组,同样的根据公式: 10)(241026iiixx求得 位面试者的成绩平均值为:108最后是第三组,依旧根据公式: 10)(571059333iiixx求得的平均值为: 805.1.3 区间估计模型的建立与求解区间估计是参数估计的一种形式。通过从总体中抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,以作为总体的分布参数(或参数的函数)的真值所在范围的估计。 3 首先对总体的样本 作出两个统计量 ,而由他们所组nxx.

11、321, 21,成的一个区间( ) ,即为置信区间。,设 为总体的未知参数, 是取自总体 的一个样本,而对n.321, X于置信度的要求,我们取 ,即 。%955这个时候,我们对未知参数 的要求是存在这样的值使得:,而根据假设可知,总体方差 已知,求均值 的 置121P 21信区间,取 统计量:U)10(,NnxU服从标准正态分布。我们通过查标准正态分布表,很快就可以得出临界值5,使其满足 ,于是有:21u212uUP|2121)()(21u21)(21)(从而使得: |21unXP2121 nuXnu21P)21unun1由此得到总体均值 的 置信区间为:nuX2121,其中, 。21)(2

12、u根据以上的的过程,利用 ,对三组数据进行计算,计算结果如下:sp第一组的置信区间取值结果,见表 :1表 : 专家甲 置信区间结果描述统计量 标准误均值 76.55 1.284下限 74.00均值的 95% 置信区间 上限 79.105% 修整均值 76.76中值 78.00方差 164.795标准差 12.837专家甲极小值 516极大值 98范围 47四分位距 24偏度 -.165 .241峰度 -1.323 .478(问题需要,这里只给出了部分的 求解数据,其余数据表格均见附表)sp这样可以得出专家甲的置信区间为 ,而所取的值 很明显是),( 10.7947在置信区间之内的。第二组的结果

13、见表 :2表 :专家乙 置信区间结果描述s统计量 标准误均值 79.86 1.148下限 77.58均值的 95% 置信区间上限 82.145% 修整均值 80.16中值 82.00方差 131.899标准差 11.485极小值 55极大值 99范围 44四分位距 18偏度 -.266 .241专家乙峰度 -.818 .478即,专家乙的置信区间为 ,所取值 也很明显在置信区间之内。),( 14.825780第三组的结果见表 :3表 :专家丙 置信区间结果描述sp统计量 标准误均值 80.09 1.081下限 77.95均值的 95% 置信区间上限 82.235% 修整均值 80.16中值 8

14、0.00方差 116.790标准差 10.807专家丙极小值 617极大值 99范围 38四分位距 18偏度 -.097 .241峰度 -1.144 .478即,专家丙的置信区间为 ,同样的,所取得值 也是在置信区间),( 23.895780之内的。这样根据置信区间以及其与标准差的偏差,最终确定缺失的数据为: 03,582,51,9 xx,5.2 问题二模型的建立与求解对于本题,我们的理解和看法有很多,而用来评判的标准也有很多。每一个面试者的表现,每一位评委的个人评判标准都是不同的。针对这个方面的问题,我们就需要对每一位面试者进行一个综合的评判。在我们的认知当中,平均分是能够反映面试者表现的最

15、直接的一个参数。但是平均分也有可能出现多人相同的情况,为此,还需要计算每一位面试者成绩的方差,来考察面试者表现的平稳程度。当然,我们觉得录取的顺序,在同样的条件下,当然是越平稳越好。对于平均分的求解,有两种不同的方法:1.对每一位面试者求五位评委所给成绩的平均分;2.就是目前被普遍采用的去除一个最高分、一个最低分,然后求剩余三个分数的平均分的方法。但是考虑到,未免某位面试者的表现,非常受到某位评委的青睐,或者表现的非常不被某位评委看中的情况不被反映出来,同时也考虑到数据计算的简洁性,以及面试场上能力好坏的直接反映以及反差的体现,最终选择了按照方案 来做。1首先,利用 求出每一位面试者的平均分,

16、然后再利用 对求得的excl excl平均分进行排序。若平均分相同的话,则计算出方差来比较发挥的稳定程度,最终得出录取排序如下表 :4表 :面试者录取顺序表序号 专家甲 专家乙 专家丙 专家丁 专家戊 平均值 方差39 92 99 79 86 90 89.2 54.719 94 95 64 96 95 88.8 192.751 94 85 94 74 93 88 75.547 88 88 96 80 87 87.8 32.25 83 79 95 83 98 87.6 69.8(由于面试者人数众多,所以这里只列举部分,具体的录取顺序排名见附录)5.3 问题三模型的建立与求解对于本题,我们的看法是

17、:每一个专家评委都是有自己的一套评判标准的,忽略专家对某一位或某一类型的人群的偏见,判断专家评分标准严格与否基本8可以从平均数、方差和偏度三个方面来进行。举例说明,比如某位专家所给出分数比另外一位专家要高出了好几分,那么很明显这位专家的评分标准是比较宽松的。但是,若两位评委所给的分数的平均数相等或者说只有很微小的差距,那么我们就必须通过其他的参数来考虑了,这个时候我们就要考虑评委打分的稳定程度了。这样,就需要求出每位评委的分数的方差了。如果某位评委的评分波动较大的话,那么就说明这位评委很有自己的一套评判标准,并且很严格的按照这个标准来执行了。其后,若是连波动程度都差不多的话,那么,我们就需要通

18、过看偏度来确定了。5.3.1 平均数的求解首先设五位评委所给分数的平均数为 , , , , ,之后根据公1y234y5式: 101ix利用 求出专家甲的平均分为: 分sp5.762y012i专家乙的平均分为: 分8.793013ix专家丙的平均分为: 分0.4y014i专家丁的平均分为: 分27.95015ix专家戊的平均分为: 分8.5.3.2 方差的计算方差的计算离不开平均数,现在,可以根据之前求得的平均数的值来计算方差。设五位评委分数的方差为: , , , , ,接下来,就可以根2123425据公式依次求出方差。 21021)(ijyx专家甲分数的方差为: 795.6420122)(ij

19、专家乙分数的方差为: 8.13230123)(ijyx9专家丙分数的方差为: 62.1541024)(ijyx专家丁分数的方差为: 8.3251025)(ij专家戊分数的方差为: 76.15.3.3 偏度的结果偏度的求解公式为: 2103)(iiiijnyxSK根据公式,利用 软件可以很快的求出每一位专家的偏度分别为:sp, , , ,165.0-28.-097.-213.-74.0-5.3.4 评委严格程度的最终判定结果最终列出了各项参数,详细见表 :5表 :各专家评分的参数数据专家 甲 乙 丙 丁 戊平均分 76.55 79.86 80.09 79.27 79.98方差 164.795 1

20、30.581 115.622 131.118 118.76偏度 -0.165 -0.268 -0.097 -0.213 -0.174根据各数据结果显示,五位评委的严格程度依次为:甲丁乙戊丙。5.4 问题四模型的建立与求解对于有多少人应该要进入第二次面试,我们进行了研究讨论。当前的面试者总体当中有 人,而就我们看来,所抽取进入第二次面试的人数占总体的10为比较优的选择。根据人数取整原则,决定选择 人进行第二轮面试。%15 16根据所有面试者成绩的平均分分布来看,我们觉得 分向上可以视为优秀。85而所要选取的进入第二次面试的人员也应该在成绩优秀的群体当中产生。根据 的排序结果,可以看出, 分向上的

21、人有 人,还差 人,因excl 8524此我们按照顺序原则,依次向下选择 个。4但是,不难看出,第 与 位的面试者的均分是相同的,这个时候,可以5316依据他们成绩的方差来判断他们谁发挥的更加稳定。很明显, 号的面试者的53发挥要更稳定一些。具体录取情况见表 :表 :第二次面试者列表序号 专家甲 乙 丙 丁 戊 平均分 方差39 92 99 79 86 90 89.2 54.719 94 95 64 96 95 88.8 192.751 94 85 94 74 93 88 75.547 88 88 96 80 87 87.8 32.25 83 79 95 83 98 87.6 69.8104

22、81 73 84 98 94 86 101.540 84 82 92 95 76 85.8 59.287 93 73 83 90 90 85.8 64.766 74 94 96 89 76 85.8 104.291 82 74 94 89 87 85.2 57.764 90 63 95 91 87 85.2 162.269 68 93 91 82 91 85 108.5其余具体的计算数值见附录。这样,就可以得出最终进入第二次面试的人员分别是:、 、 、 、 、 、 、 、 、 、 、 、 、 、 、391547408769146108653。5.5 问题五模型的建立与求解问题 中的判定依据即以

23、均值和方差区分专家的严格、宽松的判定依据以及考虑第二轮面试的需要。那么同理,本题中将各专家评分的标准差、均值、偏度作为决策目标的属性,且要求该三个指标越高越好。然后将 种属性的综合评价进行排序,最后3取综合评价前 名的专家作为第二轮的面试官,这样就需要用到了 法。3 topsi法是有限方案多目标决策分析的一种常用方法。是基于归一化后的topsi原始数据矩阵,找出有限方案中的最优方案和最劣方案(分别用最优向量和最劣向量表示) ,然后分别计算诸评价对象与最优方案和最劣方案的距离,获得各评价对象与最优方案的相对接近程度,以此作为评价优劣的依据。5.5.1 模型的建立设决策问题有 个目标 ( ) , 个可行解mjfm,21n( ) ;并设该问题的规范化加权目标的理想解是(iii Z,Z21n,,其中: (mZ,21那么用欧几里得范数作为距离的测度,则从任意可行解 到 的距离为:iZmjjijiS12)(),.3(ni式中, 为第 个目标对第 个方案的规范化加权值。ijZ同理,设 = 为问题的规范化加权目标的负理想解,则任TmZ,(21意可行解 到负理想解 之间的距离为:i jjijiS12)(),.31(ni那么,某一可行解对于理想解的相对接近度定义为: iiiCiCi,.0

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 学术论文 > 管理论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报