1、磁传感器知识介绍,整理:机械580,磁传感器概念,磁传感器是一种把磁场、电流、应力应变、温度、光等外界因素引起的敏感元件磁性能变化转换成电信号,以这种方式来检测相应物理量的器件。用于感测速度、运动和方向,应用领域包括汽车、无线和消费电子、军事、能源、医疗和数据处理等。 磁传感器市场按照技术进步的发展,主要分为四大类: 1.霍尔效应(Hall Effect)传感器 2.各向异性磁阻(AMR)传感器 3.巨磁阻(GMR)传感器 4.隧道磁阻(TMR)传感器,霍尔效应(Hall Effect)传感器,在半导体薄膜两端通以控制电流 I,并在薄膜的垂直方向施加磁感应强度为B的匀强磁场,半导体中的电子与空
2、穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场,电场强度与洛伦兹力产生平衡之后,不再聚集,这个现象叫做霍尔效应。在垂直于电流和磁场的方向上,将产生的内建电势差,称为霍尔电压U。 霍尔电压U与半导体薄膜厚度d,电场B和电流I的关系为U=k(IB/d)。这里k为霍尔系数,与半导体磁性材料有关。 霍尔传感器利用霍尔效应的原理制作,主要有霍尔线性传感器、霍尔开关和磁力计三种。,线性型霍尔传感器,由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。输出电压与外加磁场强度呈线性关系,如下图所示,在B1B2的磁感应强度范围内有较好的线性度,磁感应强度超出此范围时则呈现饱和
3、状态。,开关型霍尔传感器,由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。,开关型霍尔传感器工作原理,霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高,工作温度范围宽,可达-55150。开关型霍尔传感经过一次磁场强度的变化,则完成了一次开关动作,输出数字信号,可以计算汽车或机器转速、ABS系统中的速度传感器、汽车速度表和里程表、机车的自动门开关、无刷直流电动机、汽车点火系统、门禁和防盗报警器、自动贩卖机、打印机等。,磁力计,是利用霍尔效应产生的电势差来测算外界磁场的大小和极性。磁力计是采用CMOS工艺的平面器件。工艺相对一般IC更为简单,一般采用
4、P型衬底上N阱上形成传感器件,通过金属电极将传感器与其他电路(如放大器、调节处理器等)相连。 但这样设计的的霍尔传感器只能感知垂直于管芯表面的的磁场变化,因此增加了磁通集中器(magnetic flux concentrator),工艺上来讲就是做原来的管芯上增加一层坡莫合金,可探测平行于管芯方向的磁场。由此,霍尔传感器实现了从单轴到三轴磁力计的跨越式发展。,各向异性磁阻(AMR)传感器技术优势,1. 各向异性磁阻(AMR)技术最优良性能的磁场范围是以地球磁场为中心,对于以地球磁场作为基本操作空间的传感器应用来说,具有广大的运作空间,无需像霍耳元件那样增加聚磁等辅助手段。 2.各向异性磁阻(A
5、MR)技术是唯一被验证,可以达到在地球磁场中测量方向精确度为一度的半导体工艺技术。其他可达到同样精度技术都是无法与半导体集成的工艺。因此,AMR可与CMOS或MEMS集成在同一硅片上并提供足够的精确度。 3.AMR技术只需一层磁性薄膜,工艺简单,成本低,不需要昂贵的制造设备,具有成本优势。 4.AMR技术具有高频、低噪和高信噪比特性,在各种应用中尚无局限性。 AMR磁阻传感器可以很好地感测地磁场范围内的弱磁场测量,制成各种位移、角度、转速传感器,各种接近开关,隔离开关,用来检测一些铁磁性物体如飞机、火车、汽车。其它应用包括各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机、旋转位置传感、电
6、流传感、钻井定向、线位置测量、偏航速率传感器和虚拟实景中的头部轨迹跟踪。,巨磁阻(GMR)传感器的材料结构,具有GMR效应的材料主要有多层膜、颗粒膜、纳米颗粒合金薄膜、磁性隧道结合氧化物、超巨磁电阻薄膜等五种材料。其中自旋阀型多层膜的结构在当前的GMR磁阻传感器中应用比较广泛。 自旋阀主要有自由层(磁性材料FM),隔离层(非磁性材料NM),钉扎层(磁性材料FM)和反铁磁层(AF)四层结构。,自旋阀GMR磁阻传感器基本结构,GMR磁阻传感器由四个巨磁电阻构成惠斯通电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。当相邻磁性层磁矩平行分布,两个FM/NM界面呈现不同的阻态
7、,一个界面为高阻态,一个界面为低阻态,自旋的传导电子可以在晶体内自由移动,整体上器件呈现低阻态; 而当相邻磁性层磁矩反平行分布,两种自旋状态的传导电子都在穿过磁矩取向与其自旋方向相同的一个磁层后,遇到另一个磁矩取向与其自旋方向相反的磁层,并在那里受到强烈的散射作用,没有哪种自旋状态的电子可以穿越FM/NM界面,器件呈现高阻态。,隧道磁阻(TMR)传感器材料结构及原理,从经典物理学观点看来,铁磁层(F1)+绝缘层(I)+铁磁层(F2)的三明治结构根本无法实现电子在磁层中的穿通,而量子力学却可以完美解释这一现象。当两层铁磁层的磁化方向互相平行,多数自旋子带的电子将进入另一磁性层中多数自旋子带的空态,少数自旋子带的电子也将进入另一磁性层中少数自旋子带的空态,总的隧穿电流较大,此时器件为低阻状态; 当两层的磁铁层的磁化方向反平行,情况则刚好相反,即多数自旋子带的电子将进入另一磁性层中少数自旋子带的空态,而少数自旋子带的电子也进入另一磁性层中多数自旋子带的空态,此时隧穿电流较小,器件为高阻状态。,霍尔元件、AMR元件、GMR元件以及TMR元件的技术参数对比,