收藏 分享(赏)

AHP决策分析方法及其应用.ppt

上传人:myw993772 文档编号:5937889 上传时间:2019-03-21 格式:PPT 页数:83 大小:913.50KB
下载 相关 举报
AHP决策分析方法及其应用.ppt_第1页
第1页 / 共83页
AHP决策分析方法及其应用.ppt_第2页
第2页 / 共83页
AHP决策分析方法及其应用.ppt_第3页
第3页 / 共83页
AHP决策分析方法及其应用.ppt_第4页
第4页 / 共83页
AHP决策分析方法及其应用.ppt_第5页
第5页 / 共83页
点击查看更多>>
资源描述

1、主讲: 殷红春 博士 新浪微博 北洋 1895 1 AHP决策分析方法及其应用 天津大学 殷红春 博士 主讲: 殷红春 博士 新浪微博 北洋 1895 2 主要内容 AHP方法简介 AHP的基本步骤 AHP计算软件 AHP方法的实际应用 主讲: 殷红春 博士 新浪微博 北洋 1895 3 O(选择笔记本 ) P2 IBM P1 DELL P3 SONY C3 性能 C1 外观 C2 重量 C4 价格 C5 服务 生活中的苦恼 到底该买哪一款笔记本电脑呢? 主讲: 殷红春 博士 新浪微博 北洋 1895 4 O(选择旅游地 ) P2 苏州 P1 桂林 P3 新马泰 C3 居住 C1 景色 C2

2、费用 C4 饮食 C5 旅途 生活中的苦恼 丈夫和妻子的选择总会有不一致的地方,怎么办? 主讲: 殷红春 博士 新浪微博 北洋 1895 5 论文写作中的苦恼 定性指标怎么进行综合评价? 品牌物种的竞争能力 UP 品牌的市场能力 UP1 品牌的管理能力 UP2 品牌的基础能力 UP3 市场占有率 RP1 品牌传播能力 RP7 品牌运作能力 RP8 品牌知名度 RP3 企业文化影响力 RP12 中高级职称人员比例 RP11 品牌利税率 RP2 品牌美誉度 RP4 品牌忠诚度 RP5 品牌联想 RP6 企业管理能力 RP9 技术创新能力 RP10 主讲: 殷红春 博士 新浪微博 北洋 1895 6

3、 美国运筹学家 T. L. Saaty于 20世纪 70年代提出的 AHP决策分析法 ( Analytic Hierarchy Process,简称 AHP方法 ) , 是一种定性与定量相结合的决策分析方法 。 它常常被运用于 多目标 、 多准则 、 多要素 、多层次的非结构化的复杂决策问题 , 特别是战略决策问题的研究 , 具有十分广泛的实用性 。 1 AHP方法简介 主讲: 殷红春 博士 新浪微博 北洋 1895 7 AHP决策分析法,是一种将决策者对复杂问题的决策思维过程模型化、数量化的过程。通过这种方法,可以将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,就可以得

4、出不同方案重要性程度的权重,从而为决策方案的选择提供依据。 AHP决策分析法,是解决复杂的非结构化的地理决策问题的重要方法。 主讲: 殷红春 博士 新浪微博 北洋 1895 8 AHP的基本原理 AHP决策分析方法的基本原理,可以用以下的简单事例分析来说明。 假设有一块重量为 1的石块 A,把它砸成了 n块记为 A1, A2, , An, 它们的重量分别记为 w1, w2, ,wn。 在没有精确计重器材情况下,如何找出其中相对最重的石块呢? 主讲: 殷红春 博士 新浪微博 北洋 1895 9 假设事先已知这 n个石块的重量向量为 = (w1, w2, ,wn) T , 比较 Ai与 Aj的重量

5、 , 所构成的两两比较矩阵 nnnnnwwwwwwwwwwwwwwB121212111W是完全精确的 判断矩阵 主讲: 殷红春 博士 新浪微博 北洋 1895 10 满足 n是判断矩阵 B的特征值,且为最大特征值 是 的对应于特征值 n的特征向量。 nnnnnnnwwwnwwwwwwwwwwwwwwwwwWB2121121212111WnWB BW主讲: 殷红春 博士 新浪微博 北洋 1895 11 上述事实告诉我们,如果有一组物体,需要知道它们的重量,而又没有衡器,那么就可以通过两两比较它们的相互重量,得出每一对物体重量比的判断,从而构成判断矩阵;然后通过求解判断矩阵的最大特征值 max和它

6、所对应的特征向量,就可以得出这一组物体的相对重量。 主讲: 殷红春 博士 新浪微博 北洋 1895 12 这一思路提示我们 在复杂的决策问题研究中,对于一些无法度量的因素,只要引入合理的度量标度,通过构造判断矩阵,就可以用这种方法来度量各因素之间的相对重要性,从而为有关决策提供依据。 这一思想,实际上就是 AHP决策分析方法的基本思想, AHP决策分析方法的基本原理也由此而来。 主讲: 殷红春 博士 新浪微博 北洋 1895 13 问题? 实际评价时 , 并不知道这重量向量 W 比较 Ai与 Aj重要性时 , 通过询问决策者只能得到近似的比值aij aij wi/wj 得到的判断矩阵是近似的判

7、断矩阵 A. A B主讲: 殷红春 博士 新浪微博 北洋 1895 14 标度( aij) 的含义: Ai比 Aj 时由决策者回答下列问题所得 C K A 1 A 2 A nA 1 a 11 a 12 a 1nA 2 a 21 a 22 a 2n A n a n1 a n2 a nn1 表示两个元素相比,具有同样重要性3 表示两个元素相比,一个元素比另一个元素稍微重要5 表示两个元素相比,一个元素比另一个元素明显重要7 表示两个元素相比,一个元素比另一个元素强烈重要9 表示两个元素相比,一个元素比另一个元素极端重要主讲: 殷红春 博士 新浪微博 北洋 1895 15 判断矩阵 A 中的元素具有

8、下述性质 但是,决策者在做估计的时候,有可能造成判断的不一致性 这时, A为正互反非一致性矩阵,怎么办? 1)( 1)( 0)( iijiijij aiiiaaiiaiijkjik aaa 怎么会出现这种情况? 主讲: 殷红春 博士 新浪微博 北洋 1895 16 计算判断矩阵 A 的最大特征根 m ax 和其对应的经归一化后的特征向量 TnwwwW ),( 21 A W = m a x W由此得到的特征向量 W= (w1, w2, ,w n) T 就作为对应评价单元的权重向量。 max和 W的计算一般采用幂法、和法和方根法 Saaty认为,只要该判断矩阵 A的一致性 在允许的范围之内 ,依旧

9、可以利用正互反一致性矩阵的性质,求得矩阵 A的最大特征向量,并作为权重向量。 主讲: 殷红春 博士 新浪微博 北洋 1895 17 如何检验判断矩阵 A是否在一致性允许的范围之内呢? 01m a x n nCI Saaty定义 一致性指标 其中 为 的对角线元素之和。 Saaty引入 随机一致性指标 RI,下图是 1000次随机模拟结果 An1.0 RICICR AA一般,当一致性比率 的不一致程度在容许范围之内,可用其归一化特征向量 作为权向量,否则要重新构造成对比较矩阵,对 加 以调整。 (思考:为什么近似计算可以反映实际情况?) 时,认为 阶数 1 2 3 4 5 6 7 8 9 10

10、11 12 13 14 15RI 0 0 0 . 5 8 0 . 9 1 . 1 2 1 . 2 4 1 . 3 2 1 . 4 1 1 . 4 5 1 . 4 9 1 . 5 2 1 . 5 4 1 . 5 6 1 . 5 8 1 . 5 9主讲: 殷红春 博士 新浪微博 北洋 1895 18 主要内容 AHP方法简介 AHP的基本步骤 AHP计算软件 AHP方法的实际应用 主讲: 殷红春 博士 新浪微博 北洋 1895 19 多层次分析法的基本步骤 1 2 计算单一准则下元素的相对重要性 (单层次模型 ) 3 计算各层次上元素的组合权重 (层次总排序 ) 4 评价层次总排序计算结果的一致性

11、 主讲: 殷红春 博士 新浪微博 北洋 1895 20 1.构建递阶层次结构 决策目标 准则 1 准则 2 准则 k 子准则 1 子准则 2 子准则 m 方案 1 方案 2 方案 n 目标层 准则层 子准则层 方案层 主讲: 殷红春 博士 新浪微博 北洋 1895 21 国家综合实力 国民 收入 军事 力量 科技 水平 社会 稳定 对外 贸易 美、俄、中、日、德等大国 工作选择 贡献 收入 发展 声誉 关系 位置 供选择的岗位 例 1 国家实力分析 例 2 工作选择 主讲: 殷红春 博士 新浪微博 北洋 1895 22 过河的效益 A 经济效益 B1 社会效益 B2 环境效益 B3 节省时间C

12、1 收入C2 岸间商业C3 当地商业C4 建筑就业C5 安全可靠C6 交往沟通C7 自豪感 C8 舒适C9 进出方便C10 美化C11 桥梁 D1 隧道 D2 渡船 D3 ( 1)过河效益层次结构 例 3 横渡江河、海峡方案的抉择 主讲: 殷红春 博士 新浪微博 北洋 1895 23 过河的代价 A 经济代价 B1 环境代价 B3 社会代价 B2 投入资金C1 操作维护C2 冲击渡船业C3 冲击生活方式C4 交通拥挤C5 居民搬迁C6 汽车排放物C7 对水的污染C8 对生态的破坏C9 桥梁 D1 隧道 D2 渡船 D2 ( 2)过河代价层次结构 例 3 横渡江河、海峡方案的抉择 主讲: 殷红春

13、 博士 新浪微博 北洋 1895 24 待评价的科技成果 直接 经济 效益 C11 间接 经济 效益 C12 社会 效益 C13 学识 水平 C21 学术 创新 C22 技术 水平 C23 技术 创新 C24 效益 C1 水平 C2 规模 C3 科技成果评价 例 4 科技成果的综合评价 主讲: 殷红春 博士 新浪微博 北洋 1895 25 2 计算单一准则下元素的相对重要性 这一步是计算各层中元素相对于上层各目标元素的相对重要性(层次单排序),参见前面的单层次模型。 例:如图 相对于目标 A1而言, C1、 C2、 C3、 C4相对重要性权值为 w11、w12、 w13、 w14, 同理相对目

14、标 A2, C1、 C2、 C3、 C4相对重要性权值为 w21、w22、 w23、 w24。 A1 A2 C1 C2 C3 C4 w11 w12 w13 w14 主讲: 殷红春 博士 新浪微博 北洋 1895 26 A1A2 Am层次 A权重层次 Ba1a2 amB 层次元素组合权重B111b21bmb1miiibab111B212b22bmb2 miiibab122 Bn1nb2nbmnb miininbab13 计算各元素的总权重 主讲: 殷红春 博士 新浪微博 北洋 1895 27 总权重计算的形象理解 假设某人对笔记本购买准则的重要性得出的权重为:外观: 0.1,重量: 0.2,性能

15、: 0.3,价格: 0.1,服务: 0.3 通过两两比较,笔记本 P1在各准则下的重要性权重为:外观: 0.22,重量: 0.31,性能: 0.15,价格:0.17,服务: 0.42 则 P1笔记本的总权重为 W1 0.1 0.22 0.2 0.31 0.3 0.150.1 0.17 0.3 0.42 0.272 0.272就是在 “ 购买最适合自己的笔记本 ” 这一目标下的总权重。 主讲: 殷红春 博士 新浪微博 北洋 1895 28 4 评价层次总排序计算结果的一致性 设: CIRI其计算公式为: imIiCIaCI 1CIi为 Ai相应的 BimIiRIaRI 1RIi为 Ai相对应的

16、B并取 RICICR 当 CR 0. 10主讲: 殷红春 博士 新浪微博 北洋 1895 29 层次分析法的优点和局限性 1 系统性 层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策 ,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。 2 实用性 层次分析法把定性和定量方法结合起来,能处理许多用 传统的最优化技术无法着手的实际问题,应用范围很广,同 时,这种方法使得决策者与决策分析者能够相互沟通,决策 者甚至可以直接应用它,这就增加了决策的有效性。 主讲: 殷红春 博士 新浪微博 北洋 1895 30 3 简洁性 很容易了解层次分析法的基本原理并掌握该法的基本步骤,计算也非常简便,并且所得结果简单明确,容易被决策者了解和掌握。 以上三点体现了层次分析法的优点,该法的局限 性主要表现在以下几个方面: 第一 、只能从原有的方案中优选一个出来,没有办法得出更好的新方案。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 学术论文 > 大学论文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报