收藏 分享(赏)

三极管参数等.doc

上传人:HR专家 文档编号:5903158 上传时间:2019-03-20 格式:DOC 页数:10 大小:377KB
下载 相关 举报
三极管参数等.doc_第1页
第1页 / 共10页
三极管参数等.doc_第2页
第2页 / 共10页
三极管参数等.doc_第3页
第3页 / 共10页
三极管参数等.doc_第4页
第4页 / 共10页
三极管参数等.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、第 1 页 共 10 页附件 A、三极管的 Pspice 模型参数.Model NPN(PNP、LPNP) model parameters模型参数 含 义 单 位 默认值 备 注AF flicker noise exponent 1.0 噪声指数BF ideal maximum forward beta 100.0 最大正向放大倍数BR ideal maximum reverse beta 1.0 最大反向放大倍数CJC base-collector zero-bias p-n capacitance farad 0.0 集电结电容CJE base-emitter zero-bias p-n

2、 capacitance farad 0.0 发射结电容CJS (CCS) Substrate zero-bias p-n capacitance farad 0.0 零偏集电极-衬底电容EG bandgap voltage (barrier height) eV 1.11FC forward-bias depletion capacitor coefficient 0.5GAMMA epitaxial region doping factor 1E-11IKF (IK) corner for forward-beta high-current roll-off amp infiniteIKR

3、 corner for reverse-beta high-current roll-off amp infiniteIRB current at which Rb falls halfway to amp infiniteIS transport saturation current amp 1E-16 饱和电流ISC (C4) base-collector leakage saturation current amp 0.0 集电结漏电流ISE (C2) base-emitter leakage saturation current amp 0.0 发射结漏电流ISS substrate

4、p-n saturation current amp 0.0ITF transit time dependency on Ic amp 0.0KF flicker noise coefficient 0.0 噪声系数MJC (MC) base-collector p-n grading factor 0.33MJE (ME) base-emitter p-n grading factor 0.33MJS (MS) substrate p-n grading factor 0.0NC base-collector leakage emission coefficient 2.0 集电结漏电系数N

5、E base-emitter leakage emission coefficient 1.5 发射结漏电系数NF forward current emission coefficient 1.0 正向电流系数NK high-current roll-off coefficient 0.5NR reverse current emission coefficient 1.0NS substrate p-n emission coefficient 1.0PTF excess phase 1/(2TF)Hz degree 0.0第 2 页 共 10 页QCO epitaxial region c

6、harge factor coulomb 0.0RB zero-bias (maximum) base resistance ohm 0.0 最大基极电阻RBM minimum base resistance ohm RB 最小基极电阻RC collector ohmic resistance ohm 0.0RCO epitaxial region resistance ohm 0.0RE emitter ohmic resistance ohm 0.0TF ideal forward transit time sec 0.0 正向传递时间TR ideal reverse transit ti

7、me sec 0.0 反向传递时间TRB1 RB temperature coefficient (linear) 0C -1 0.0 RB的温度系数TRB2 RB temperature coefficient (quadratic) 0C -2 0.0TRC1 RC temperature coefficient (linear) 0C -1 0.0TRC2 RC temperature coefficient (quadratic) 0C -2 0.0TRE1 RE temperature coefficient (linear) 0C -1 0.0TRE2 RE temperature

8、 coefficient (quadratic) 0C -2 0.0TRM1 RBM temperature coefficient (linear) 0C -1 0.0TRM2 RBM temperature coefficient (quadratic) 0C -2 0.0T_ABS absolute temperature 0C T_MEASURED measured temperature 0C T_REL_GLOBAL relative to current temperature 0C T_REL_LOCAL relative to AKO model temperature 0C

9、 VAF (VA) forward Early voltage volt infiniteVAR (VB) reverse Early voltage volt infiniteVJC (PC) base-collector built-in potential volt 0.75VJE (PE) base-emitter built-in potential volt 0.75VJS (PS) substrate p-n built-in potential volt 0.75VO carrier mobility knee voltage volt 10.0VTF transit time

10、 dependency on Vbc volt infiniteXCJC fraction of CJC connected internally to Rb 1.0XCJC2 fraction of CJC connected internally to Rb 1.0XTB forward and reverse beta temperature coefficient 0.0 正向和反向放大倍数的温度影响系数XTF transit time bias dependence coefficient 0.0 传递时间系数XTI (PT) IS temperature effect expone

11、nt 3.0 IS 的温度影响系数第 3 页 共 10 页附件 B、 PSpice Goal Function特征函数 功能说明Bandwidth (1, db_level) 计算波形 1 从最大值下降 db_level db 的波形宽度。BPBW (1, db_level) Same as Bandwidth (1, db_level)CenterFreq (1, db_level) 计算波形 1 从最大值下降 db_level db 的两点的中心频率。Falltime (1) 计算波形 1 的下降时间。Gain Margin (1,2) 计算波形 1 的相位为-180 。 时,波形 2 的

12、分贝值。 GenFall (1) 类似于 Falltime (1),但它的下降时间相对的 y 轴是起点于终点,而不是最大值与最小值。GenRise (1) 与 GenFall (1)类似,只是它是上升时间。HPBW (1, db_level) 查找第一次比最大值低 db_level db 的 x 坐标。 (上升沿)LPBW (1, db_level) 与 HPBW 类似,只是用于下降沿。Maxr (1, begin-x, end-x) 查找区间的最大值。Overshoot (1) 计算最大值与终点之间 y 轴坐标差与终点值的百分比。Peak (1, n_occur) 查找第 n-occur 个

13、峰值点的 Y 值Period (1) 计算波形 1 的周期。Phase Margin (1,2) 查找波形 1 在 0 分贝时波形 2 的相位。Pulsewidth (1) 计算波形 1 的脉冲宽度。Risetime (1) 计算波形 1 的上升时间。Swingr (1, begin-x, end-x) 计算在指定范围内,波形 1 的最大值与最小值之差。TPmW2 (1, Period)XatNthy (1, Y-value, n-occur) 查找波形 1 上第 n-occur 个 Y-value 值时的 X 坐标值。XatNthYn(1,Y_value,n_occur) 与 XatNthy

14、 类似,但它查找的 Y 值必须在下降沿上。XatNthYp(1,Y_value,n_occur) 与 XatNthy 类似,但它查找的 Y 值必须在上升沿上。XatNthYpct(1,Y_PCT,n_occur) 查找第 n-occur 个 Y 轴值为 Y 轴范围的 Y_pct%时的 X 轴值。YatX(1,X_value) 查找 X-value 值处的 Y 值。YatXpct(1,X_pct) 查找 X 轴值为 X 轴范围的 X_pct%时的 Y 轴值。第 4 页 共 10 页附件 C Modeling voltage-controlled and temperature-dependent

15、 resistorsAnalog Behavioral Modeling (ABM) can be used to model a nonlinear resistor through use of Ohm 抯 law and tables and expressions which describe resistance. Here are some examples.Voltage-controlled resistorIf a Resistance vs. Voltage curve is available, a look-up table can be used in the ABM

16、 expression. This table contains (Voltage, Resistance) pairs picked from points on the curve. The voltage input is nonlinearly mapped from the voltage values in the table to the resistance values. Linear interpolation is used between table values.Let 抯 say that points picked from a Resistance vs. Vo

17、ltage curve are:Voltage Resistance0.5 251.0 502.0 100The ABM expression for this is shown in Figure 1.Figure 1 - Voltage controlled resistor using look-up tableTemperature-dependent resistor第 5 页 共 10 页A temperature-dependent resistor (or thermistor) can be modeled with a look-up table, or an expres

18、sion can be used to describe how the resistance varies with temperature. The denominator in the expression in Figure 2 is used to describe common thermistors. The TEMP variable in the expression is the simulation temperature, in Celsius. This is then converted to Kelvin by adding 273.15. This step i

19、s necessary to avoid a divide by zero problem in the denominator, when T=0 C.NOTE: TEMP can only be used in ABM expressions (E, G devices).Figure 3 shows the results of a DC sweep of temperature from -40 to 60 C. The y-axis shows the resistance or V(I1:-)/1A.Figure 2 - Temperature controlled resisto

20、r Figure 3 - PSpice plot of Resistance vs. Temperature (current=1A)Variable Q RLC network第 6 页 共 10 页In most circuits the value of a resistor is fixed during a simulation. While the value can be made to change for a set of simulations by using a Parametric Sweep to move through a fixed sequence of v

21、alues, a voltage-controlled resistor can be made to change dynamically during a simulation. This is illustrated by the circuit shown in Figure 5, which employs a voltage-controlled resistor. Figure 4 - Parameter sweep of control voltageThis circuit employs an external reference component that is sen

22、sed. The output impedance equals the value of the control voltage times the reference. Here, we will use Rref, a 50 ohm resistor as our reference. As a result, the output impedance is seen by the circuit as a floating resistor equal to the value of V(Control) times the resistance value of Rref. In o

23、ur circuit, the control voltage value is stepped from 0.5 volt to 2 volts in 0.5 volt steps, therefore, the resistance between nodes 3 and 0 varies from 25 ohms to 100 ohms in 25 ohm-steps.第 7 页 共 10 页Figure 5 - Variable Q RLC circuit Figure 6 - Output waveforms of variable Q RLC circuitA transient

24、analysis of this circuit using a 0.5 ms wide pulse will show how the ringing differs as the Q is varied.Using Probe, we can observe how the ringing varies as the resistance changes. Figure 6 shows the input pulse and the voltage across the capacitor C1. Comparing the four output waveforms, we can se

25、e the most pronounced ringing occurs when the resistor has the lowest value and the Q is greatest. Any signal source can be used to drive the voltage-controlled resistance. If we had used a sinusoidal control source instead of a staircase, the resistance would have varied dynamically during the simu

26、lation.第 8 页 共 10 页附件 D 变压器 PSpice 模型等效电路变压器模型*Transformer Subcircuit Parameters *RATIO = Turns ratio= Secondary/Primary*RP = Primary DC resistance *RS = Secondary DC resistance*LEAK = Leakage inductance *MAG = Magnetizing inductance*Generic Transformer *dw: 2-8-99 corrected VISRC polarity and FCTRL

27、 configuration*Connections: * Pri+ * | Pri- * | | Sec+ * | | | Sec- * | | | |.SUBCKT TRANS 1 2 3 4 PARAMS: RATIO=“1“ RP=“0“.1 RS=“0“.1 LEAK=“1u“ MAG=“1k“VISRC 4 9 0VFCTRL 5 2 VISRC RATIOEVCVS 8 9 5 2 RATIORPRI 1 7 RPRSEC 8 3 RSLLEAK 7 5 LEAKLMAGNET 2 5 MAG.ENDS TRANS等价于用 K_Line 把两个电感关联起来.第 9 页 共 10

28、页CT 中心抽头输出变压器模型*TRANSCT:Transformer Subcircuit Parameters *RATIO = Turns ratio (= Secondary/Primary)*RP = Primary DC resistance *RS = Secondary DC resistance*LEAK = Leakage inductance *MAG = Magnetizing inductance*5:1 Centre-Tapped Transformer*Connections:* Pri+ * | Pri- * | | Sec+ * | | | SecCT * |

29、 | | | Sec- * | | | | |.SUBCKT 5TO1CT 1 2 3 4 5 PARAMS: RATIO=“0“.2 RP=“0“.1 RS=“0“.1 LEAK=“1u“ MAG=“1u“RPRI 1 7 RPLLEAK 7 10 LEAKLMAGNET 6 10 MAGVSEC1 9 4 DC 0VFSEC1 6 2 VSEC1 (RATIO/2)ESEC1 8 9 10 2 (RATIO/2)RSEC1 8 3 (RS/2)VSEC2 12 5 DC 0VFSEC2 6 2 VSEC2 (RATIO/2)ESEC2 11 12 10 2 (RATIO/2)RSEC2 1

30、1 4 (RS/2).ENDS 5TO1CTTransformer 变压器相关参数:Primary turns 一次线匝 Secondary turns 二次线匝Primary (Winding)resistance 初级线圈电阻 Primary leakage inductance 初级线圈漏电感Primary coil inductance 初级线圈电感 Coefficient of Coupling 耦合系数Magnetizing inductance 磁化电感Primary-to-Secondary Turns Ratio 初次级匝数比第 10 页 共 10 页附件 E 创建元器件的

31、Model Maker 中已有模型如下:AC Motor 交流发动机Bjt 双极性结型晶体管Boost Converter 升压转换器Buck Boost Converter 降-升压型变换器Buck Converter 降压转换器Cuk Converter Cuk 转换器Diode 二极管Lossyline 高损耗线Microstrip line 微波带状线、微带线Open End Microstrip line 开口的微带线、开放式的微带线、末端开口的微带线MOSFET(4pins, DGS Sub) (Metal-Oxide-Semiconductor Field-Effect Tans

32、istor)MOS 场效晶体管,绝缘、金属氧化物半导体晶体管Operational Amplifier 运算放大器RF Spiral Inductor 射频螺旋电感Interdigital Capacitor 交指电容SCR (Semiconductor Control Rectifier) 半导体控制整流器Stripline BendStrip line 带状传输线、电介质条状线Linear Transformer with Neutral Terminal 中性线段线性变压器、中性点接线端线性变压器Two Winding Linear Transformer 双绕组线性变压器、双线圈线性变压器Ideal Transformer (Multiple Winding) 理想变压器(多线圈)Linear Transfomer(Multiple Winding) 线性变压器(多线圈)Nonlinear Transformer(Multiple Winding) 非线性变压器(多线圈)Waveguide 波导管、波导器Zener (diodes) 齐纳(二极管)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 经营企划

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报