收藏 分享(赏)

高考抽象函数专题.doc

上传人:HR专家 文档编号:5855178 上传时间:2019-03-19 格式:DOC 页数:9 大小:202.50KB
下载 相关 举报
高考抽象函数专题.doc_第1页
第1页 / 共9页
高考抽象函数专题.doc_第2页
第2页 / 共9页
高考抽象函数专题.doc_第3页
第3页 / 共9页
高考抽象函数专题.doc_第4页
第4页 / 共9页
高考抽象函数专题.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、抽象函数专题 第 1 页(共 9 页)抽象函数专题几类抽象函数模型抽象函数模型 适用模型的初等函数f (xy )f (x )f (y) 正比例函数 f (x)kx(k 0)f (xy)f ( x)f (y)或 f ( )xy f(x)f(y)幂函数 f (x)x nf (xy)f (x )f (y)或 f (xy )f(x)f(y) 指数函数 f (x)a x(a0 且 a1)f (xy)f (x) f (y) 或 f ( )f (x)f (y)xy对数函数 f (x)log ax(a0 且 a1)f (xT)f (x) 正余弦函数 f (x)sinx ,f (x)cos xf (xy) f(

2、x) f(y)1 f(x)f(y) 正切函数 f (x)tanx练习题1定义域为(0,) 的函数 f (x)满足 f (xy)f (x)f (y),若 f (4)2,则 f ( )的值为2_答案: 12解:因为 f (4)f (2)f (2) ,f (2)f ( )f ( ),2 2所以 f (4)4 f ( ),f ( ) 2 2122函数 f (x)满足 f (xy 2)f (x)2f (y)2 且 f (1)0,则 f (2018)的值为_答案:1009解:f (0)0,f (1) ,f (x1) f (x) ,f (2018)f (1)2017 100912 12 123(1)函数 f

3、 (x)满足 f (xy )f (x)f (y)x y1,若 f (1)1,则 f (8)A1 B1 C19 D43答案:D解:因为 f (1)1,y 1 代入 f (xy)f (x)f (y)x y1,得f (x 1)f (x) x 2,因此:f (2)f (1) 3f (3)f (2) 4f (8) f (7)9抽象函数专题 第 2 页(共 9 页)累加,得 f (8) 43(2)函数 f (x)满足 f (xy )f (x)f (y)xy1,若 f (1)1,则 f (8)A1 B1 C19 D43答案:C 解:因为 f (1)1,y 1 代入 f (xy)f (x)f (y)xy 1,

4、得f (x 1)f (x) x 2,因此:f (1)f (0)2f (0)f (1) 1f (1)f (2)0f (2)f (3)1f (3)f (4)2f (4)f (5)3f (5)f (6)4f (6)f (7)5f (7)f (8)6累加,得 f (8)19另外:f (x x)f (x) f (x )x 2 1f (0)f (x) f (x )x 21f (x)f (x) x 224定义在 R 上的函数 f (x)满足 f (x1x 2)f (x 1)f (x 2) 1,则下列说法正确的是Af (x)为奇函数 Bf (x)为偶函数Cf (x)1 为奇函数 Df (x)1 为偶函数答案:

5、C 解:x1x 20 代入 f (x1x 2)f ( x1)f (x 2)1,得 f (0)1x1x,x 2x 代入 f (x1x 2)f (x1)f (x2)1,得 f (x)f (x) 2,f (x)图象关于点(0, 1)对称,所以 f (x)1 为奇函数5设 f (x)是定义在(0, )上的单调增函数,满足 f (xy)f (x)f (y),f (3)1,当 f (x)f (x8)2 时 x 的取值范围是A(8,) B(8,9 C8,9 D(0 ,8)抽象函数专题 第 3 页(共 9 页)答案:B解:211f (3)f (3)f (9),由 f (x)f (x8)2,可得 fx(x8)f

6、 (9),因为 f (x) 是定义在(0 ,)上的增函数,所以有Error!解得 80 时 , f (x)0,那么yf (x 2)f (x 1)f (x 2)f (x 1)f (x2x 1)f (x )因为x 0,所以y 1 时,f (x)x2x10,那么yf (x 2)f (x 1)f ( )x2x1抽象函数专题 第 5 页(共 9 页)因为当 1 时 , f (x)1,所以 f ( )0,所以 f (x)为单调递减函数x2x1 x2x1(2)因为 f (x)在 (0,)上是单调递减函数,所以 f (x)在2,9上的最小值为 f (9)由 f ( )f ( x1)f (x 2)得,f ( )

7、f (9)f (3),而 f (3)1,所以 f (9)2x1x2 93所以 f (x)在2,9上的最小值为211(12 分)定义域为(,0)(0 ,) 的函数 f (x)满足 f (x) f (y) f (xy)(1)求证:f ( )f (x);1x(2)求证:f (x) 为偶函数;(3)当 1 时 , f (x)0, 求证: f (x)在(,0)上单调递减解:(1)取 xy1 代入 f (x) f (y) f (xy),得 f (1) 0取 y 代入 f (x) f (y) f (xy),得 f (x) f ( ) 0, 故 f ( )f ( x)1x 1x 1x(2)取 y1 代入 f

8、(x) f (y) f (xy),得 f (x) f (1) f (x) 取 xy1 代入 f (x) f (y) f (xy),f (1) f (1) f (1),所以 f (1) 0所以 f (x) f ( x),f (x)为偶函数(3)解法 1:设 x1,x 2 (0,),xx 2x 10,那么yf (x 2)f (x 1)f (x 2) f ( )f ( )1x1 x2x1因为 1,所以 f ( )0,y 0,所以 f (x)在(0,)上单调递增x2x1 x2x1由(2)知 f (x)为偶函数,所以 f (x)在( ,0)上单调递减解法 2:设 x1,x 2 (,0),xx 2x 10

9、,那么yf (x 2)f (x 1)f (x 2) f ( )f ( )f ( )1x1 x2x1 x1x2因为 1,所以 f ( )0,y 0 时,f (x)1,且 f (0)0(1)求证:f (0)1;(2)求证:f (x)0;(3)求证:f (x) 是 R 上的增函数;抽象函数专题 第 6 页(共 9 页)(4)若 f (x)f (2xx 2)1,求 x 的取值范围解:(1)取 ab0 代入 f (ab) f (a)f (b),得 f (0)2 f (0),因为 f (0)0,所以 f (0)1(2)ax,bx 代入 f (ab )f (a)f (b) ,得 f (0)f (x)f (x

10、 ),即 f (x) 1f( x)当 x0 时,f ( x)1;x0 时,f (x) 1;当 x0,f (x )1,所以 f (x) (0,1)1f( x)综上,f (x)0(3)设 x1,x 2 R,xx 2x 10,那么yf (x 2)f (x 1)f (x 1x) f (x1)f (x 1)f (x) f (x 1)f (x 1)f (x)1 因为 xx 2x 10,所以 f (x)1,故y0,f (x)是 R 上的增函数(4)f (x)f (2xx 2)f (x2xx 2)f (3xx 2),1f (0),所以不等式 f (x)f (2xx 2)1 可化为 f (3xx 2) f (0

11、)由(2)知 3xx 20,得 x 的取值范围为 (0,3) 13(12 分)已知定义在 R 上的不恒为零的函数 f (x)满足 f (xy)y f (x) x f (y)(1)判断 f (x)的奇偶性;(2)若 f (2)2, ,设 an ,b n ,求证数列 an 为等 差 数 列 ,*Nf( 2n)2n f( 2n)n数列 bn 为等比数列解:(1)取 xy1 代入 f (xy)y f (x) x f (y),得 f (1) 0取 xy1 代入 f (xy)y f (x) x f (y),得 f (1) 0取 y1 代入 f (x )f (x ) x f (1),得 f (x)f (x)

12、 ,所以 f (x)为奇函数(2)因为 f (2n1 )f (22 n)2 f (2n) 2n f (2),所以 f (2n1 ) 2 f (2n) 2n1 同除以2n 1,得 1,即 an1 a n1,所以数列 an 为等 差 数 列 f(2n+1)2n+1 f(2n)2na1 1,所以 an a 1 (n1) 1n ,所以 f (2n)2 nf(2)2因为 2,所以数列b n 为等比数列bn+1bn14(12 分)定义在(0,) 上的函数 f (x)满足:对任意实数 m,f (x m)mf (x );f (2)1抽象函数专题 第 7 页(共 9 页)(1)求证:f (xy)f (x )f

13、(y );(2)求证:f (x) 是 (0,)上的单调增函数;(3)若 f (x)f (x3)2,求 x 的取值范围解:(1)因为 x,y 均为正数,根据指数函数性质可知,总有实数 m,n 使得 x2 m,y2 n于是 f (xy)f (2 m2n)f (2 m+n)(m +n)f (2)m+n而 mm f (2) f (2 m) f (x) , nn f (2) f (2 n) f (y),所以 f (xy)f (x)+f (y) (2)取 xy1 代入 f (xy)f (x)f (y),得 f (1) 0取 y 代入 f (1)f (x)f ( ),得f (x) f ( )1x 1x 1x

14、设 x1,x 2 (0,),xx 2x 10,那么yf (x 2)f (x 1)f (x 2)f ( )f ( )1x1 x2x1因为 1,根据指数函数性质可知,总有正实数 r,使得 2 r,所以yf (2r)x2x1 x2x1r 0因此 f (x)是(0,)上的单调增函数(3)由(1)知若 f (x)f (x3) f (x23 x),2 f (2)f (2) f (4)所以不等式 f (x)f (x 3)2 即 f (x23 x)f (4)由Error! 得 x 的取值范围为(3,4 15(12 分)定义在0,1上的函数 f (x)满足 f (x) 0,f (1)1当 x1 0,x 2 0,

15、x 1x 2 1 时,f (x1x 2) f (x1)f (x 2) (1)求 f (0);(2)求 f (x)最大值;(3)当 x 0,1时,4f (x )24(2a) f (x)54a ,求实数 a 的取值范 围 0解:(1)因为 f (x) 0,所以 f (0) 0取 x1x 20 代入 f (x1x 2) f (x1)f (x 2)得 f (0) 0,因此 f (0)0(2)设 x1,x 2 0,1,x x2x 10,则x0,1,所以 f (x) 0yf (x 2)f (x 1)f (x 1x) f (x1) f (x1 )f (x ) f (x 1)f (x) 0所以函数 f (x)

16、在0,1上不是减函数,f (x)最大值是 f (1)1(3)当 x 0,1时,f (x ) 0,1若 f (x)1,则 44(2 a)54a 1 ,不等式 4f (x)24(2 a)f (x)54a0抽象函数专题 第 8 页(共 9 页)成立0若 f (x) 0,1),分离参数 a1f (x) 141 f (x)因为 1f (x) 2 1,当 f (x) 时等号成立141 f (x) 12所以实数 a 的取值范围是( ,1备选:抽象函数专题 第 9 页(共 9 页)1(12 分,重庆)已知定义域为 R 的函数 f (x)满足 f (f (x)x 2x)f (x)x 2x (1)若 f (2)3

17、,求 f (1);(2)求 f (0);(3)设有且仅有一个实数 x0,使得 f (x0)x 0,求函数 f (x)的解析表达式2(12 分)已知函数 f (x)满足 f (xy )f (y)(x2y1)x,且 f (1) 0(1)求 f (0)的值;(2)当 x1,x 2(0, )时, f (x1)21 时,f (x )0,f (2) 1(1)求证:f (x) 在 (0,)上是增函数;(2)解不等式 f (2x21) 时,f (x)0求12证:f (x)是单调递增函数5(12 分)已知函数 f (x)满足 f (xy)f (x)f (y),且 f (x)0,当 x1 时,f (x)1试判断 f (x)在(0, )上的单调性6(12 分)已知函数 f (x)的定义域关于原点对称,且满足 f (xy) ,存在正常数 a,f (x)f (y) 1f (x) f (y)使 f (a)1求证: f (x)是奇函数

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高考课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报