1、PID参数调节原理和整定方法,基于CS3000FCS,总貌,PID控制概述 P比例调节 I积分调节 D微分调节 什么样的PID参数为最佳 CS3000系统PID参数整定方法 FOXBRO系统PID参数整定方法 总结,PID控制概述,什么是PID控制?它是比例、积分和微分控制的简称:Proportional-Integral-Differential Controller 反馈控制根据偏差进行的控制,PID调节器,阀门,被控对象,测量变送器,设定值,偏差,P比例调节,P:比例调节在P调节中,调节器的输出信号u与偏差信号e成比例, 即 u = Kc e (kc称为比例增益) 但在实际控制中习惯用增
2、益的倒数表示 =1 / kc (称为比例带)不同的DCS使用不同的参数作为P的调节参数,以CS3000为例,选用 比例带为调节参数,单位。可以理解为:若测量仪表的量程为100则50% 就表示被调量需要变化50才能使调节阀从全关到全开。值越大,作用越弱,值越小,作用越强。,P比例调节,(a) 越大调节阀的动作幅度小,变化平稳,甚至无超调,但余差大,调节时间长。 (b) 减小调节阀动作幅度加大,被调量来回波动,余差减小。 (c) 进一步减小被调量波动加剧 (d) 为临界被调量等幅振荡波动 (e) 小于临界被调量法散振荡,P比例调节,P比例调节特点 比例调节反应速度快,输出与输入同步,没有时间滞后,
3、其动态特性好。 比例调节的结果不能使被调参数完全回到给定值,而产生余差。 P的一般选取范围 压力调节: 3070% 流量调节: 60300% 液位调节: 40100% 温度调节: 4080%,I积分调节,I:积分调节 一般用于控制系统的准确性,消除余差。 对于同一偏差信号,积分常数越大,表示积分调节作用越强;积分常数就表示了积分作用的大小。 积分常数的倒数叫积分时间,用TI表示。,不同的DCS使用不同的参数作为I的调节参数,以CS3000为例,选用积分时间为调节参数,单位:s。可以理解为:值越大,作用越弱。一般不单独使用纯积分调节器,I积分调节,只要偏差不为零,控制输出就不为零,它就要动作到把
4、被调量的静差完全消除为止,积分调节的特性就是无差调节。 积分速度大,调节阀的速度加快,但系统的稳定性降低,当积分速度大到超过某一临界值时,整个系统变为不稳定。,I积分调节,积分速度对调节过程的影响,增大积分速度调节阀的速度加快,但系统稳定性降低当积分速度达到并超过临界值时,整个 系统变为不稳定,发散震荡过程。 减小积分速度调节阀的速度减慢,系统稳定性增加, 但调节速度变慢无论增大还是减小积分速度,被调量最 后都没有余差。,I积分调节,比例调节和积分调节的比较:积分调节可以消除静差。但对比例调节来说,当被调参数突然出现较大的偏差时,调节器能立即按比例地把调节阀的开度开得很大,但积分调节器就做不到
5、这一点,它需要一定的时间才能将调节阀的开度开大或减小,因此,积分调节会使调节过程非常缓慢。总之,比例调节能及时进行调节,积分调节可以消除静差。但它的输出有段积累过程,过渡过程进行的十分缓慢,如果系统干扰作用频繁,更显得十分乏力,单独的积分调节系统较罕见,它作为一种辅助调节规律与比例调节一起组成比例积分调节规律。,P与I调节过程的比较,PI调节,比例积分调节(PI调节)积分调节可以消除静差,但有滞后现象,比例调节没有滞后现象,但存在静差。PI调节就是综合P、I两种调节的优点,利用P调节快速抵消干扰的影响,同时利用I调节消除残差。一般在P调节的基础上增加I调节需适当减少比例作用,增大比例度,D微分
6、调节,D:微分调节 微分调节一般只与偏差的变化成比例,偏差变化越剧烈,调节输出作用越强。从而及时抑制偏差增长,提高系统稳定性。 微分调节主要用于调节对象有大的传递滞后和容量滞后。(例如温度与大容量液位) 微分一般用微分时间表示,单位S,用TD表示。在实际使用过程中,值越大作用越强。,要注意,微分调节器不能单独作用,必须配合使用,并且微分调节无法消除余差,只对偏差变化速度有反应,与偏差大小无关。,纯P作用下的阶跃响应,纯P调节为有差调节 比例作用越强:稳态误差越小,响应快,但超调大,波动周期缩小,PI作用下的阶跃响应,引入积分,消除了余差 积分作用越强,响应速度越快,超调大,振荡加剧, 波动周期
7、增长,PI作用下的阶跃响应,在同样积分作用下,减小比例作用,可增加系统稳定。,PD作用下的阶跃响应,引入微分项,提高了响应速度,增加了系统的稳定性,但不能消除系统余差 微分系数太大,系统振荡频率增高,PD作用下的阶跃响应,相同比例作用情况下,微分作用越强,响应速度越快,系统越稳定,PID作用下的阶跃响应,PD的基础上引入积分项,就能达到理想的性能指标,针对不同的调节回路,需要的指标不一样,因此引入的调节参数也就不一样。,PID参数的工程整定法,动态特性参数法 稳定边界法 衰减曲线法 经验法 实际生产过程中,不可能让生产工艺产生较大波动,以上方法不通用也不实际,顾本文主要对经验法详细介绍,PID
8、参数的工程整定法,经验法即先确定一个调节器的参数值P和I,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。若曲线不够理想,可改变P或I,根据控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的P和I就是最佳值。,什么样的PID参数为最佳,衰减比 过渡过程曲线上第一个波峰和第二个波峰的峰值比,即B:B,一般为410最好. 余差 过渡过程终了时,被控变量的稳态值与设定值之间的差,即C,要尽量为0 过渡时间 控制系统受到扰动后,重新回到新的稳态的最短时间。越短越好。,过渡时间,位号,位号注释,位号标志,功能块模式,测量值,CS3000 仪表面板,CS3000 仪表面板
9、,输出值指针 设定值指针 功能块模式 报警状态 位号 位号注释 位号标志 测量值棒状图 测量值上下限 工程单位,CS3000 操作仪表面板,CS3000 调整窗口,比例带表;值越大,作用越小,范围0-1000 % 积分时间;值越大,作用越小,范围0.1-10000s 微分时间;值越大,作用越大,范围0-10000s,要进行PID参数调节,首先必须要有权限。显示“=”表示可以进行参数修改,显示“:”表示不能对参数进行修改。默认值班长有权限修改。,进行PID参数调节时,建议按下保留按钮,以方便在切换画面后观察保留的趋势,PID参数调整完后必须取消。,实时曲线观察窗口,CS3000系统PID参数整定
10、方法,无扰动切换 勿扰动切换:控制回路手动(MAN)到自动(AUT)状态切换时,保证设定值(SV)与测量值(PV)保持一致或相当。 PID控制只有在控制回路处于AUT状态,也就是负反馈回路时才有用。,CS3000系统PID参数整定方法,增大比例系数P一般将加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。 增大积分时间I有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。 增大微分时间D有利于加快系统的响应速度,使系统超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。 在凑试时,可参考以上参数对系统控制过程
11、的影响趋势,对参数调整实行先比例、后积分,再微分的整定步骤。,CS3000系统PID参数整定方法,串级回路PID参数调整 因为串级调节系统一般应用于容量滞后较大的场合,必须加微分,所以主调一般取PID,而副调一般取P就可以了。但是副参数是流量,压力时,可加一定的I作用,这里也不是为了消除余差,只是流量,压力付对象时间常数太小,导致副调节器的P不能太小,调节作用弱,加上积分是为了使副参数偏离给定值太远。,CS3000系统常用PID参数,IA 系统PID参数整定,手动/自动 切换,要进行PID参数调节,首先必须要有权限,默认情况下值班长有权限修改。,P:比例带;值越大,作用越弱。单位:% I:积分
12、时间;值越大,作用越弱,单位:分钟(m) D:微分时间;值越大,作用越强,单位:分钟(m)PID参数含义均与CS3000一致,但要注意积分和微分时间,为分钟。,IA 系统PID参数整定,IA系统的PID参数整定方法完全可应用前面介绍的方法,进行经验整定。,实时趋势图,总结,PID参数的整定原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。,一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允
13、许的最大值的60%70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%70%。比例增益P调试完成。 b.确定积分时间常数Ti 比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%180%。积分时间常数Ti调试完成。 c.确定积分时间常数Td 积分时间常数Td一般不用设定,为0即可。若要设定,与确定 P和Ti的方法相同,取不振荡时的30%。 d.系统空载、带载联调,再对PID参数进行微调,直至满足要求。,总结,PID参数整定顺口溜 参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁(周期短),比例度盘要放大曲线漂浮绕大湾(超调大),比例度盘往小扳曲线偏离回复慢(有静差),积分系数要加大曲线波动周期长,积分时间要加长曲线振荡频率快(周期更短),先把微分降下来动差大来波动慢,微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低,