收藏 分享(赏)

交通分布预测.ppt

上传人:weiwoduzun 文档编号:5755841 上传时间:2019-03-16 格式:PPT 页数:62 大小:846KB
下载 相关 举报
交通分布预测.ppt_第1页
第1页 / 共62页
交通分布预测.ppt_第2页
第2页 / 共62页
交通分布预测.ppt_第3页
第3页 / 共62页
交通分布预测.ppt_第4页
第4页 / 共62页
交通分布预测.ppt_第5页
第5页 / 共62页
点击查看更多>>
资源描述

1、,交通分布(Trip Distribution),第1节 概述第2节 增长系数法第3节 重力模型法第4节 最大熵模型法,第一节 概述,.,.,.,.,.,.,.,.,发生交通量,吸引交通量,生成交通量,出行分布的目的根据现状的OD分布量、交通小区的经济特征、土地利用的发展变化,来找出未来各交通小区的出行交换量。,现在OD表,目标OD表,5,守恒法则,双约束(doubly constrained) 同时满足上述约束条件的出行分布模型,称为双约束模型。 单约束(singly constrained) 前两个约束条件只有一个成立的出行分布模型,称为单约束模型。,6,交通分布模型多达数十种,但总的来说

2、交通分布模型可以分为两大类(增长系数法和综合法) 第一类模型适用于短期的交通分布研究,比较简单,主要应用于交通网络没有发生重大变化的短期预测 第二类方法使用了广义费用,可以用于长期的研究或者短期研究中交通网络有较大变化的情况。,常用方法,第二节 增长系数法,8,增长系数法 (Growth Factor Method),增长系数法:基于出行的起点和终点所在的小区的增长特性,利用现状OD表计算未来的OD表的方法。 适用于小区或小区间的出行,不太受空间的阻挠因素的影响,而只受地区间产生及吸引特性影响的空间分布形态。 增长特征:人口、经济、土地使用。,符号解释,现有O-D量,预测O-D量,第m次迭代中

3、的O-D量,预测发生交通量,预测吸引交通量,预测生成交通量,第m次迭代的发生增长系数,第m次迭代的吸引增长系数,给定的误差参数,第m次迭代中的发生量,第m次迭代中的吸引量,第m次迭代中的生成量,假设在给定 的条件下,预测 。,第1步 令迭代次数m=0; 第2步 给出现在OD表中 、 、 、 及将来OD表中的 、 、 。 第3步 求出各小区的发生与吸引交通量的增长率 , 。,增长率法算法,第4步 求第m+1次近似值,第5步 收敛判别,若满足上述条件,结束计算;反之,令m=m+1,返回到第2步。,根据 的种类不同,可以分为:常增长率法(Unique Growth Factor Method)平均增

4、长率法(Average Growth Factor Method)底特律法(Detroit Method)福莱特法(Frater Method),所有OD量的增长率仅与i小区的发生交通量增长率有关,或仅与j小区的吸引交通量有关,或仅与生成交通量的增长率有关,是一个常数。增长函数为:,=常数,预测精度不高,不需要迭代,是一种最简单的方法。,常增长率法,例1:试利用3个小区目标年发生交通量预测值和基础年的出行 分布矩阵(表1),求解目标年的出行分布矩阵。表1 现状OD表和将来各小区的预测值(单位:万次),解:采用常增长系数法,即: (1)求各个小区的发生增长系数:,(2)表1各项均乘以发生增长系数

5、,得到表2。表2 常增长系数法计算得到的OD表(单位:万次),16,假设i-j小区之间OD量的增长率等于i小区出行发生量的增长率和j小区出行吸引量增长率的平均值。,该方法公式简明,容易计算。 其缺点是收敛速度慢,计算精度比较低。,平均增长率法,例2:试利用例1给出的现状分布交通量(表3)、将来发生与吸引交通量(表4),求解3交通小区将来的分布交通量。设定收敛标准为 =3%。,表3 现状OD表(单位:万次) 表4 将来的发生与吸引交通量,解:(1)求发生交通量和吸引交通量增长系数,(2)第1次近似:,表5 第一次迭代计算OD表,(3)重新计算 和,(4)收敛判定,由于 和 部分系数大于3%的误差

6、,因此需要重新进行迭代。,(5)第2次近似:,(6)重新计算 和,(7)收敛判定:由于 和 的各项系数误差均小于3%,因此不需要继续迭代。上表即为平均增长系数法所求将来分布交通量。,假设i-j小区间OD量的增长系数与i小区出行发生量和j小区出行 吸引量增长系数之积成正比,与出行生成量的增长系数成反比。 即:,该方法考虑将来的出行分布不仅与出行的发生吸引增长率有关, 还与出行生成量增长率有关,考虑的因素较平均增长系数方法 全面,但同样是收敛速度比较慢,需要多次迭代才能得到满足 条件的结果。,底特律法(Detroit Method),例3:试利用例2给出的现状分布交通量(表3)、将来发生与 吸引交

7、通量(表4),采用底特律方法,求解交通小区将来的OD 量。设定收敛标准为 =3%。,表3 现状OD表(单位:万次) 表4 将来的发生与吸引交通量,解:(1)求发生交通量和吸引交通量增长系数,(2)求生成交通量增长系数的倒数:,(3)第1次近似:,表7 第一次迭代计算OD表,(4)重新计算 和,(5)收敛判定,由于 和 部分系数大于3%的误差,重新进行迭代。,(6)求生成交通量增长系数的倒数:,(7)第2次近似:,最后, 经过3次迭代,得到最终的OD矩阵为:,福莱特法(Frator),该方法假设i,j小区之间OD交通量 的增长系数不仅与i小区的发生增长系数和j小区的吸引增长系数有关,还与整个规划

8、区域的其他交通小区的增长系数有关。模型公式为:,式中:表示i小区的位置系数;表示j小区的位置系数。,例4:试利用例2给出的现状分布交通量(表3)、将来发生与 吸引交通量(表4),采用福莱特方法,求解交通小区将来的OD 量。设定收敛标准为 =3%。,表3 现状OD表(单位:万次) 表4 将来的发生与吸引交通量,解:(1)求发生交通量增长系数 和吸引交通量增长系数,(2)求 和 :,(3)第1次近似:,(4)重新计算 和,(5)收敛判定,由于 和 的误差均在3%之内,因此不需要继续迭代。,较平均增长系数法收敛速度较快 在实际工作中广泛应用 其计算过程较复杂,优点 (1)结构简单、实用的比较多; (

9、2)适用于小时交通量或日交通量等的预测; (3)对于变化较小的OD表预测非常有效; (4)预测铁路车站间的OD分布非常有效。 缺点 (1)必须有所有小区的OD交通量; (2)对象地区发生如下大规模变化时,该方法不适用; (3)交通小区之间的交通量值较小时,存在问题; (4)因为预测结果因方法的不同而异; (5)缺乏合理性。,增长系数法的特点,第三节 重力模型,重力模型法 (Gravity Method),模拟物理学中的牛顿的万有引力定律,基本假定:交通区i到交通区j的交通分布量与交通区i的交通量、交通区j的交通吸引量成正比,与交通区i和j之间的交通阻抗参数,如两区中心间交通的距离、时间或费用等

10、成反比。,无约束重力模型,Casey在1955年提出了如下重力模型,该模型也是最早出现的 重力模型:,分别表示i小区和j小区的人口,表示i,j小区之间的距离,表示参数,模型本身不满足交通守恒约束条件:,改进的重力模型可表示为:,常见的交通阻抗函数有以下几种形式:,幂函数:,指数函数:,组合函数:,为参数,根据现状OD调查资料,利用最小二乘法确定。,例:按例3中表3和表4给出的现状OD表和将来发生与吸引交通量,以及表5和表6给出的现状和将来行驶时间,试利用重力模型和平均增长系数法,求出将来OD表。设定收敛标准为,表3 现状OD表(单位:万次) 表4 将来的发生与吸引交通量,表5 现状行驶时间 表

11、6 将来行驶时间,解:(1)用下面的无约束重力模型:,两边取对数,得,已知数据,待标定参数,令:,则:,通过表3和表5获取9个样本数据,采用最小二乘法对这9个样本数据进行标定,得出,=-2.084,=1.173,=-1.455,标定的重力模型为,(2) 第一次计算得到的OD表,(3)通过无约束重力模型计算得到的OD表不满足出行分布的 约束条件,因此还要用其它方法继续进行迭代,这里采用平均 增长系数法进行迭代计算。重新计算 和,计算结果如下面表所示,用平均增长系数法第一次迭代计算OD表,用平均增长系数法第三次迭代计算OD表,修正重力模型,1. 乌尔希斯重力模型,为交通阻抗函数, 一般形式:,待定

12、系数根据现状OD调查资料拟和确定,一般可采用试算法等数值方式,以某一指标作为控制目标,通过用模型计算和实际调查所得指标的误差比较确定。,先假定一个 值,利用现状OD统计资料所得的 , 以及 代入模型中进行计算,所得出的计算交通分布称为GM分布。GM分布的平均行程时间采用下式计算:,GM分布与现状分布的每次运行的平均行程时间之间的相对误差为。当交通按GM分布与按实际分布每次运行的平均相对误差不大于某一限定值(常用3%)时,计算即可结束;当误差超过限定值时需改动待定系数 ,进行下一轮计算。调整方法为:如果GM分布的 大于现状分布 ,可增大 值;反之,则减小 值。,2. 美国公路局重力模型(B.P.

13、R.模型),式中, 为调整系数(也叫地域间结合度),其计算公式为:,其中, 表示i小区到j小区的实际分布交通量与计算分布交通量之比; 表示i小区到j小区的实际分布交通量与i小区的出行发生量之比。,的计算方法为:,首先令 =1,根据现状OD表标定模型,计算 。,将现状数据代入模型,计算出OD分布。,根据上面的公式计算 。,假定 的值在将来不发生变化,预测时不做任何修改而 直接使用。,标定 的方法与乌尔希斯重力模型 相同。,这两种模型均能满足出行产生约束条件,即: ,因此都称为单约束重力模型。用上述两种重力模型进行交通分布预测时,首先是将预测的交通产生量和吸引量以及将来的交通阻抗参数带入模型进行计

14、算。通常计算出的交通吸引量与给定的交通吸引量并不相同,因此需要进行进一步迭代计算。,为如下形式:,双约束重力模型,以幂指数交通阻抗函数 为例介绍其计算方法:,第1步:令m=0,m为迭代次数;,第2步:给出 (可以用最小二乘法求出);,第3步:令 ,求出 ( );,第4步:求出 和 ;,第5步:收敛判定。若满足收敛条件,则结束计算;反之,令m+1=m,返回第2步重新计算。,优点 (1)直观上容易理解; (2)考虑路网的变化和土地利用对人们的出行产生的影响; (3)特定交通小区之间的OD交通量为零时,也能预测; (4)能比较敏感地反映交通小区之间行驶时间变化的情况。 缺点 (1)缺乏对人的出行行为

15、的分析; (2)将出行费用视为定值; (3)重力模型使用了同一时间段; (4)求内内交通量时的行驶时间难以给出; (5)交通小区之间的距离小时,有夸大预测的可能性; (6)必须借助于其它方法进行收敛计算。,重力模型的特点,第四节 最大熵模型,最大熵模型 (Entropy Model),情况1 情况2 情况3 情况4 情况5 OD交通量状态,计算步骤(Wilson模型): 第步 给出值。 第步 求出j和i。 第3步 如果j和 i非收敛,则返回第2步;反之,执行第4步。 第4步 将j、 i和代入式(2),求出 ,这时,如果总费用条件式(1)满足,则结束计算;反之,更新 值 ,返回第步。,特点: 能表现出行者的微观行动; 总交通费用是出行行为选择的结果,事先给定脱离现实情况; 各微观状态的概率相等,即各目的地的选择概率相等的假设没有考虑距离和行驶时间等因素。,本章小结,出行分布模型的目的和约束条件 出行分布模型常用的方法 增长系数方法的特点 重力模型方法的特点 增长系数方法的计算 重力模型的模型形式及其标定 熵模型的概念,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 经营企划

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报