1、第二章 有理数总复习,重温这些知识,你会觉得亲切!,祝你周末愉快!,1.负数 2.有理数 3.数轴 4.互为相反数 5.互为倒数 6.有理数的绝对值 7.有理数大小的比较 8.科学记数法、近似数与有效数字,一、有理数的基本概念,二、有理数的运算,加、减、乘、除、乘方运算,一、有理数的基本概念,1.负数:,在正数前面加“”的数;,0既不是正数,也不是负数。,判断:1)a一定是正数;2)a一定是负数;3)(a)一定大于0;4)0表示没有。,2.有理数:,整数和分数统称有理数。,有理数,整数,分数,正整数,负整数,正分数,负分数,有理数,正有理数,零,负有理数,正整数,正分数,负整数,负分数,自然数
2、,零,非负整数集有,12,0,-8,基础练习 1把下列各数填在相应额大括号内:1,0.1,-789,25,0,-20,-3.14,-590,6/7 正整数集 ; 正有理数集 ; 负有理数集 ;负整数集 ; 自然数集 ; 正分数集 负分数集 2 某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。,3.数 轴,规定了原点、正方向和单位长度的直线.,1)在数轴上表示的两个数,右边的数总比左边的数大;,2)正数都大于0,负数都小于0;正数大于一切负数;,3)所有有理数都可以用数轴上的点表示。,练习 比3大的负整数是_; 已知是
3、整数且-4m3,则为_。 有理数中,最大的负整数是_,最小的正整数是_。最大的非正数是_。 与原点的距离为三个单位的点有_个,他们分别表示的有理数是_和_。,-2,-1,-3,-2,-1,0,1,2,-1,1,0,+3,-3, 选择题: (1)在数轴上,原点及原点左边所表示的数( ) 整数 负数 非负数 非正数 (2)下列语句中正确的是( ) 数轴上的点只能表示整数 数轴上的点只能表示分数 数轴上的点只能表示有理数 所有有理数都可以用数轴上的点表示出来 (3)在数轴上点A表示-4,如果把原点O向负方向移 动1个单位,那么在新数轴上点A表示的数是( ) A.-5, B.-4 C.-3 D.-2,
4、D,D,C,4.相反数,只有符号不同的两个数,其中一个是另一个的相反数。,1)数a的相反数是-a,2)0的相反数是0.,-2,2,-4,4,3)若a、b互为相反数,则a+b=0.,(a是任意一个有理数);,基础练习 1-5的相反数是 ;-(-8)的相反数是 ;- +(-6)=_;0的相反数是 ; a的相反数是 ; 的相反数的倒数是_ ; 2若a和b是互为相反数,则a+b( ) A. 2a B .2b C. 0 D. 任意有理数 3(1)如果a13,那么a_;(2)如果-a5.4,那么a_;(3)如果x6,那么x_;(4)x9,那么x_. 4已知a、b都是有理数,且|a|=a,|b|=-b,则a
5、b是( )A负数; B.正数; C.负数或零; D.非负数,5,-8,6,0,-a,8,C,13,5.4,6,-9,C,5、用-a表示的数一定是( ) A .负数 B. 正数 C .正数或负数 D.正数或负数或0 6、一个数的相反数是最小的正整数,那么这个数是( ) A .1 B. 1 C .1 D. 0 7、互为相反的两个数在数轴上位于原点两旁( )在一个数前面添上“-”号,它就成了一个负数( ) 只要符号不同,这两个数就是相反数( ),D,A,5.倒 数,乘积是1的两个数互为倒数.,1)a的倒数是 (a0);,3)若a与b互为倒数,则ab=1.,2)0没有倒数 ;,下列各数,哪两个数互为倒
6、数?8, ,-1,+(-8),1,,4)倒数是它本身的是_.,6.绝对值,一个数a的绝对值就是数轴上表示数a的点与原点的距离。,1)数a的绝对值记作a;,a,-a,0,3) 对任何有理数a,总有a0.,基础练习 12的绝对值表示它离开原点的距离是 个单位,记作 . 2 |-8|= ; -|-5|= ; 绝对值等于4的数是_。 3绝对值等于其相反数的数一定是( ) A负数 B正数 C负数或零 D正数或零 4 ,则x=_; , 则 x=_;,2,-2,8,-5,4,C,7,7,5如果 ,则 6绝对值不大于11的整数有( )A11个 B12个 C22个 D23个,a-3,3-a,D,例:在数轴上表示
7、绝对值不小于2而又不大于5.1的所有整数;并求出绝对值小于4的所有整数的和与积,-5,4,3,2,5,-2,-3,-4,绝对值小于4的所有整数的和:,绝对值小于4的所有整数的积:,(-3)+(-2)+(-1)+1+2+3+0= 0,0,(-3)(-2)(-1)0 123= 0,1)绝对值小于2的整数有_。2)绝对值等于它本身的数有_。3)绝对值不大于3的负整数有_。4)数a和b的绝对值分别为2和5,且在数轴上表示a的点在表示b的点左侧,则b的值为 .,0,1,零和正数,-1,-2,-3,5,练习1,练习2,1、若(x-1)2+|y+4|=0,则3x+5y=_ X-1=0,y+4=0, x=1
8、,y=-4 3x+5y=31+5(-4)=3-20=-17 2、若|a-3|+ |3a-4b|=0,则-2a+8b=_ 3、| 7 |=( ),|- 7 |=( )绝对值是7的数是( ) 4、若|3-|+|4- |=_,1,12,5、已知|x|=3,|y|=2,且xy,则x+y=_ |x|=3,|y|=2 x=3,y=2 xy x不能为3 x=-3,y=2 或 x=-3,y=-2 x+y=-3+2=-1 或 x+y=-3-2=-5,-1或-5,6、计算,先去掉绝对值符号,再进行计算!,答案:9/10,7.有理数大小的比较,1)可通过数轴比较:在数轴上的两个数,右边的数 总比左边的数大;正数都大
9、于0,负数都小于0; 正数大于一切负数; 2)两个负数,绝对值大的反而小。 即:若a0,b0,且ab,则a b.,8.科学记数法、近似数与有效数字,1. 把一个大于10的数记成a10n 的形式,其中a是整数数位只有一位 的数,这种记数法叫做科学记数法 .,2. 一个近似数,从左边第一个不是0 的数字起到,到精确到的数位止,所 有的数字,都叫做这个数的有效数字。,一只苍蝇的腹内细菌多达2800万个,你能用科学记数法表示吗?2800万个=2.8103(万个)或 2800万个=28 000 000个=2.8107个1.03106有几位整数?3.010n(n是正整数)有几位整数?(n+1位整数),(1
10、 030 000),(有7位整数),例:下列由四舍五入得到的近似数,各精确到哪一位,各有几位有效数字?,(1)43.8(2)0.03086(3)2.4万 (4)6104 (5)6.0104 解:,(1)43.8精确到十分位.有3个有效数字:4,3,8;,(2)0.03086精确到十万分位,有四个有效数字:3,0,8,6;,(3)2.4万精确到千位,有2个有效数字:2,4;,(4) 6104 精确到万位,有1个有效数字:6 ;,(5) 6.0104 精确到千位,有2个有效数字:6 ,0;,基础练习 1用科学记数数表示: 1305000000= ; -1020= . 24万的原数是 . 3. 近似
11、数3.5万精确到 位,有 个有效数字. 4近似数0.4062精确到 ,有 个有效数字.,1.305109,-1.02103,40000,千,2,万分位,4,有理数的五种运算,1.运算法则 2.运算顺序 3.运 算 律,1.运算法则,1)有理数加法法则 2)有理数减法法则 3)有理数乘法法则 4)有理数除法法则 5)有理数的乘方,1)有理数加法法则, 同号两数相加,取相同的符号,并把绝对值相加;, 异号两数相加,取绝对值较大 的加数的符号,并用较大的绝对值 减去较小的绝对值;互为相反数 的两数相加得0;, 一个数同0相加,仍得这个数。,有理数加法法则应用举例:,同号相加:,异号相加,与0相加,若
12、a、b互为相反数,则a+b=,a是任一个有理数,则a+0=,0,a,(-5)+(-3)=-8,(+5)+(+3)=8,5+(-3)= 2,-5+(+3)= -2,2)有理数减法法则,减去一个数,等于加上这个数的相反数.即 a-b=a+(-b),例:分别求出数轴上两点间的距离: 表示2的点与表示-7的点; 表示-3的点与表示-1的点。,解:2-(-7)=2+7=9(或-7-2=-9=9)-1-(-3)=-1+3=2,3)有理数的乘法法则,两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0., 几个不等于0的数相乘,积的符号 由负因数的个数决定,当负因数有奇 数个时,积为负;当负
13、因数有偶数个 时,积为正., 几个数相乘,有一个因数为0, 积就为0.,同号相乘,异号相乘,数与0相乘,a为任何有理数,则 a0=,0,有理数乘法法则应用举例:,23=6,(-2)3 = -6,(-2)(-3)=6,2(-3)= -6,连乘,(-2)(-3)(-4) =-24,(-2)3(-4) =24,4)有理数除法法则,除以一个数等于乘上这个数的倒数;即,ab=a (b0), 两数相除,同号得正,异号得负, 并把绝对值相除;0除以任何一个不等于0的数,都 得0.,5)有理数的乘方,求n个相同因数的积的运算,叫做乘方。,正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.,练习
14、1)在 中,12是 数,10是数,读作 ; 2) 的底数是 , 指数是 ,读作 ;,7,的7次方,底,指,12的10次方,12的10次幂,9、计算: 42+(27)+27+58,解: 原式=(27)+27+(58 +42),小试牛刀,=0+100,=100,10、计算:,解: 原式=,=8+64 =10,小试牛刀,11、计算:,(1)32= (2)(3)2= (3)33= (4)(3)3=,9,小试牛刀,9,27,27,11、计算:,(5)(3)2= (6) (2)3=,9,(7) (8),( 8)=8,小试牛刀,12、计算:,14+(2)223(2)3,解:原式=1+48(8),小试牛刀,=
15、 1+48+8,= 3,13、计算:, 32( 3)2+3( 6),解:原式=9 9+(18),小试牛刀,= 1+(18),= 19,1、计算:1.2+340.8= 。 2、某运动员在东西走向的公路上练习跑步,跑步情况记录如下:(向东为正,单位:米)1000,1200,1100,800,1400 该运动员共跑的路程为( )A.1500米 B.5500米 C.4500米 D.3700米,丰收园,3,B,丰收园,3、五个有理数的积为负数,则五个数中负数的个数是( )A.1 B.3 C.5 D.1或3或54、一个数的立方等于它本身,这个数是( )A.0 B.1 C.1,1 D.1,1,0,D,D,5
16、、一杯饮料,第一次喝了一半,第二次喝了剩下的一半,如此喝下去,第五次喝后剩下的饮料是原来的几分之几?,丰收园,丰收园,6、五袋白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:4.5,4,2.3,3.5,2.5 (1)这五袋白糖共超过多少千克? (2)总重量是多少千克?,解:(1)4.542.33.52.5=1.8,(2)5051.8=251.8,丰收园,7、在下列说法中,正确的个数是( ) 任何一个有理数都可以用数轴上的一个点来表示 数轴上的每一个点都表示一个有理数 任何有理数的绝对值都不可能是负数 每个有理数都有相反数A、4 B、3 C、2 D、1,B,丰收园,8、下列说
17、法正确的是( )A、正数与负数统称为有理数 B、带负号的数是负数C、正数一定大于0 D、最大的负数是1,C,丰收园,9、在数轴上,原点两旁与原点等距离的两点所表示的数的关系是( )A、相等 B、互为相反数C、互为倒数 D、不能确定 10、如果一个数的相反数比它本身大, 那么这个数为( ) A、正数 B、负数 C、非负数 D、不等于零的有理数,B,B,丰收园,11、在有理数中,倒数等于本身的数有( )A、1个 B、2个 C、3个 D、无数个,B,下面的解题过程是否正确?如果有错误请加以订正。,改正:,3.有理数的运算律,1)加法交换律,a+b=b+a,2)加法结合律,(a+b)+c=a+(b+c
18、),3)乘法交换律,ab=ba,4)乘法结合律,(ab)c=a(bc),5)分 配 律,a(b+c)=ab+ac,解 题 技 能,加法四结合,1.凑整结合法 2.同号结合法 3.两个相反数结合法 4.同分母或易通分的分数结合法,A、5.6+(-0.9)+4.4+(-8.1)+(-1),C、(+7)-(-15)+(-12)-(+7),D、1-4+7-10+13-16+19-22,解 题 技 能,乘法三结合,1、积为整数结合 2、两个倒数结合 3、能约分的结合,分配律,分配律反着用,73、,分配律计算技巧,真假分配律,专题训练1 充分利用概念,互为相反数的两个数的和为0,互为倒数的积为1.绝对值是正数的有两个,且它们互为相反数,例:已知a、b互为相反数,c,d互为倒数,m是绝对值最小的数,求代数式,非负数性质的应用,数形结合的思想方法,已知ab,且0,试比较a,b,-a,-b的大小,分类讨论的思想,比较1a与1a的大小。,练习 1、已知有理数a、b、c在数轴上的位置如图,化简|a|-|a+b|+|c-a|+|b+c|,b,a,0,c,拆项、合并法在计算中的应用,1、若a0,b0,且|a|b|,则a+b_0,特殊值法,2、若x0,且|x|y|,则x+y_0,