收藏 分享(赏)

第10图像特征提取(第二版).ppt

上传人:weiwoduzun 文档编号:5688247 上传时间:2019-03-12 格式:PPT 页数:127 大小:4.75MB
下载 相关 举报
第10图像特征提取(第二版).ppt_第1页
第1页 / 共127页
第10图像特征提取(第二版).ppt_第2页
第2页 / 共127页
第10图像特征提取(第二版).ppt_第3页
第3页 / 共127页
第10图像特征提取(第二版).ppt_第4页
第4页 / 共127页
第10图像特征提取(第二版).ppt_第5页
第5页 / 共127页
点击查看更多>>
资源描述

1、第十章 图像特征提取,数字图像处理研究生课程,在图像技术领域的许多应用中,人们总是希望从分割出的区域中分辨出地物类别,例如分辨农田、森林、湖泊、沙滩等;或是希望从分割出的区域中识别出某种物体(目标),例如在河流中识别舰船;在飞机跑道上识别飞机等。进行地物分类和物体识别的第一步就是物体特征的提取和检测,然后才能根据检测和提取的图像特征对图像中可能的物体进行识别。,图像特征是用于区分一个图像内部特征的最基本的属性。图像特征可分成自然特征和人工特征两大类。人工特征是指人们为了便于对图像进行处理和分析而人为认定的图像特征,比如图像直方图、图像频谱和图像的各种统计特征(图像的均值、图像的方差、图像的标准

2、差、图像的熵)等。自然特征是指图像固有的特征,比如图像中的边缘、角点、纹理、形状和颜色等。,10.1 图像的边缘特征及其检测方法,10.1.1 图像的边缘特征,图像边缘具有方向和幅度两个特征。沿边缘走向,像素的灰度值变化比较平缓,而沿垂直于边缘的走向,像素的灰度值则变化比较剧烈。这种剧烈的变化或者呈阶跃状(step edge),或者呈屋顶状(roof edge),分别称为阶跃状边缘和屋顶状边缘。一般常用一阶和二阶导数来描述和检测边缘。,上升阶跃边缘 下降阶跃边缘 脉冲状边缘 屋顶边缘(a) (b) (c) (d),图10.1 图像边缘及其导数曲线规律示例,10.1.1 图像的边缘特征,综上所述

3、,图像中的边缘可以通过对它们求导数来确定,而导数可利用微分算子来计算。对于数字图像来说,通常是利用差分来近似微分。,10.1.1 图像的边缘特征,设f(x,y)为连续图像函数,Gx和Gy分别为x方向和y方向的梯度,且在点(x,y)处的梯度可以表示为一个矢量,并有其梯度定义:,(10.1),若记:,10.1.2 梯度边缘检测,(10.2),(10.3),(10.4),(10.5),该梯度矢量在点(x,y)处的梯度幅值定义为:,或用其最大值来近似梯度幅值:,实际中常用两个分量的绝对值之和来近似梯度幅值,即:,梯度的方向(由梯度矢量的幅角表示)是函数f(x,y)增加最快的方向,并定义为:,10.1.

4、2 梯度边缘检测,10.1.2 梯度边缘检测,从梯度原理出发,已经发展了许多边缘检测算子,下面是几种最典型的边缘检测算子。,(1) Roberts算子Roberts(罗伯特)边缘检测算子是基于:任意一对相互垂直方向上的差分可以看成是梯度的近似求解,并可用对角线上相邻像素之差来代替梯度寻找边缘。所以,罗伯特算子是一个交叉算子,其在点(i,j)的梯度幅值表示为:,10.1.2 梯度边缘检测,(10.6),其中:,(1) Roberts算子(续),10.1.2 梯度边缘检测,(10.6),(10.7),(10.8),所以,式(10.6)可一般地用卷积模板可表示为:,其中,Gx和Gy对应22模板可分别

5、表示为:,10.1.2 梯度边缘检测,(1) Roberts算子(续)利用Roberts边缘检测算子进行边缘检测的方法是:分别利用上述两个模板对图像进行逐像素卷积,将2 个卷积结果值相加,然后判别该相加结果是否大于或等于某个阈值,如果满足条件,则将其作为结果图像中对应于模板(i,j)位置的像素值;如果不满足条件,则给结果图像中对应于模板(i,j)位置的像素赋0 值。,10.1.2 梯度边缘检测,(1) Roberts算子(续)由于Roberts边缘检测算子是利用图像的两个对角线方向的相邻像素之差进行梯度幅值的检测,所以求得的是在差分点(i+1/2,j+1/2)处梯度幅值的近似值,而不是所预期的

6、点(i,j)处的近似值,为了避免引起混淆,可采用33邻域计算梯度值。,(2) Sobel算子 Sobel算子(索贝尔)算子是33的,其在点(i,j)的梯度幅值表示为:,10.1.2 梯度边缘检测,(10.10),简化的卷积模板表示形式为 :,其中,Gx和Gy是33像素窗口(模板)的中心点像素在x 方向和y 方向上的梯度,也即利用Sobel 边缘检测算子得到的是边缘检测结果图像中与33模板的中心点(i,j)对应的那个位置处的像素值。,(10.9),(2) Sobel算子(续) Gx和Gy定义为:,10.1.2 梯度边缘检测,(10.12),其中,x方向和y方向梯度的模板形式为 :,(10.11a

7、),(10.11b),(2) Sobel算子(续) 利用Sobel边缘检测算子进行边缘检测的方法是:分别利用上述两个模板对图像进行逐像素卷积,将2个卷积结果值相加,然后判别该相加结果是否大于或等于某个阈值,如果满足条件,则将其作为结果图像中对应于模板中心位置(i,j)处的像素值;如果不满足条件,则给结果图像中对应于模板中心位置(i,j)处的像素赋0 值。,10.1.2 梯度边缘检测,(2) Sobel算子(续) Sobel边缘检测算子在较好地获得边缘效果的同时,并对噪声具有一定的平滑作用,减小了对噪声的敏感性。但Sobel边缘检测算子检测的边缘比较粗,也即会检测出一些伪边缘,所以边缘检测精度比

8、较低。,10.1.2 梯度边缘检测,(3) Prewitt算子 Prewitt算子(蒲瑞维特)算子在方向和方向的梯度幅值形式与Sobel算子的形式完全相同,只是系数均为1。对应的33模板分别为:,10.1.2 梯度边缘检测,(10.14),(3) Prewitt算子(续) Prewitt算子的计算显然比Sobel算子更为简单,但在噪声抑止方面Sobel算子比Prewitt算子略胜一筹。需要强调的是,从总体上来说,梯度算子对噪声都有一定的敏感性,所以比较适用于图像边缘灰度值比较尖锐,且图像中噪声比较小的情况下应用。,10.1.2 梯度边缘检测,图10.4显示了对图像进行梯度边缘检测的示例及其效果

9、。考虑到Robets算子检测的边缘非常精细,照相制版印刷后可能基本上看不到边缘效果,所以书上给出的图10.4(b)至(h)是用值为80的阈值统一将检测的结果图像转换成的二值黑白图像。,10.1.2 梯度边缘检测,原图像,Robets,Sobel,Prewitt,10.1.3 二阶微分边缘检测,在利用一阶导数的边缘检测算子(器)进行边缘检测时,有时会出现因检测到的边缘点过多而导致边缘(线)过粗的情况。通过去除一阶导数中的非局部最大值就可以检测出更细的边缘,而一阶导数的局部最大值对应着二阶导数的零交叉点。所以通过找图像的二阶导数的零交叉点就能找到精确的边缘点。,10.1.3 二阶微分边缘检测,拉普

10、拉斯是一种无方向性的二阶导数算子,其在点(x,y)处的拉普拉斯值定义为:,(10.15),10.1.3 二阶微分边缘检测,拉普拉斯是一种无方向性的二阶导数算子,其在点(x,y)处的拉普拉斯值定义为:,(10.15),其中:,(10.16),(10.17),10.1.3 二阶微分边缘检测,合并式(10.16)和式(10.17)可得 :,对应的几种模板为:,H1=,图10.3 Laplacian二阶边缘检测算子的边缘检测示例,10.1.3 二阶微分边缘检测,10.1.4 Mmarr边缘检测算法,为了克服了一般微分运算对噪声敏感的缺点, Marr边缘检测算法利用能够反映人眼视觉特性的LOG算子对图像

11、进行检测,并结合二阶导数零交叉的性质对边缘进行定位,在图像边缘检测方面得到了较好应用。,10.1.4 Mmarr边缘检测算法,典型的2维高斯函数的形式为:,(10.19),其中, 称为尺度因子,用于控制去噪效果;实验结果表明,当 =1时去噪效果较好。,10.1.4 Mmarr边缘检测算法,Marr边缘检测算法可分为两个主要过程:(1)利用2维高斯函数对图像进行低通滤波,也即用2维高斯函数与原图像f(x,y)进行卷积。,(10.20),就可得到平滑后的图像 。这一步可消除图像中空间尺度小于的图像强度变化,去除部分噪声。,10.1.4 Mmarr边缘检测算法,Marr边缘检测算法可分为两个主要过程

12、:(2)使用拉普拉斯算子 对 进行二阶导数运算,如式(10.21);就可提取卷积运算后的零交叉点作为图像的边缘。,(10.21),其中,(10.22),称为高斯-拉普拉斯(LOG)算子。由于LOG算子是由Marr提出来的,所以又称为Marr算子。,10.1.4 Mmarr边缘检测算法,也即,用Mmarr边缘检测算法对原图像进行边缘检测的结果图像 可表示为:,(10.23),可见,高斯-拉普拉斯算子把Gauss的平滑滤波器和Laplacian锐化滤波器结合了起来,也即把用2维高斯函数与原图像f(x,y)进行卷积和用拉普拉斯算子 对卷积结果进行二阶导数运算结合起来;先平滑掉噪声,再进行边缘检测(因

13、为二阶导数等于0处对应的像素就是图像的边缘),所以边缘检测的效果会更好。,10.1.4 Mmarr边缘检测算法,在实际应用中,LOG算子一般取55的模板。,10.1.4 Mmarr边缘检测算法,图10.5给出了利用LOG算子进行边缘检测的结果示例。,(a)原图像 (b)边缘检测结果图像,图10.5 利用LOG算子的边缘检测结果示例,10.2 图像的点与角点特征及其检测方法,10.2.1 图像点特征及其检测方法,如果图像中的一个非常小的区域的灰度幅值与其领域值相比有着明显的差异,则称这个非常小的区域称为图像点(一般意义上的孤立像素点),如图10.6所示。,图10.6 图像的点特征示意图,10.2

14、.1 图像点特征及其检测方法,对图像中的点特征的提取有多种方法,最基本的方法仍是模板匹配方法,常用的点特征提取与检测模板如图10.7所示。,图10.7 图像的点特征提取模板,10.2.2 图像角点的概念,关于图像角点的定义有多重不同的看法。从直观可视的角度出发,两条直线相交的顶点可看作是角点(如图10.8所示);物体的几个平面的相交处也可以看作是角点,等等。从图像特征的角度出发,图像中周围灰度变化较为剧烈的点可看作是角点;图像边界上曲率足够高的点也可看作是角点,等等。,图10.8 图像的角点特征示意图,10.2.2 图像角点的概念,角点检测方法有很多种,其检测原理也多种多样,但这些方法概括起来

15、大体可以分为三类:一是基于模板的角点检测算法;二是基于边缘的角点检测算法;三是基于图像灰度变化的角点检测算法。 其中,基于图像灰度变化的角点检测算法应用最为广泛。,10.2.3 SUSAN角点检测算法,1、SUSAN算法的原理 SUSAN算法通过核值相似区(Univalue Segment Assimilating Nucleus,USAN)的大小来判别图像角点,并实现图像中角点特征的检测及提取;采用的角点检测模板是一种近似圆形的模板,如图10.9所示。,图10.9 SUSAN算子圆形模板,10.2.3 SUSAN角点检测算法,1、SUSAN算法的原理(续) 在SUSAN方法中,当模板在目标图

16、像上移动时,图像中位于圆形模板(窗口)中心等待被检测的像素称为核心点。在假设图像非纹理的情况下,核心点的邻域(图像中位于圆形模板下的除核心点像素以外的其它像素组成的区域)被划分为两个区域:一个是灰度值等于(或相似于)核心点灰度值的区域,称为核值相似区,即USAN;另一个是灰度值不相似于核心点灰度值的区域,也即与核心点像素灰度值相差比较明显的像素组成的区域。,10.2.3 SUSAN角点检测算法,1、SUSAN算法的原理(续) 设阈值t 为一几何灰度门限,当某一像素点的灰度值与模板核心像素点灰度的差值小于几何门限t 时,就认为该点与核心点具有相同(或相近)的灰度值,由满足该条件的所有像素点组成的

17、区域称为USAN区域。,10.2.3 SUSAN角点检测算法,1、SUSAN算法的原理(续) 由USAN区域的定义可以知道,USAN区域包含了图像的局部结构信息,其大小反映了图像局部特征的强度。当模板在图像上移动时,USAN区域大体可以分为三类:当模板完全处于图像的背景(如图10.10的白色区域)或目标(如图10.10的灰色区域)中时,USAN区域最大,大小为模板大小,如图10.10中的位置a。,10.2.3 SUSAN角点检测算法,1、SUSAN算法的原理(续) 当模板中心处于角点上时,USAN区域最小,如图10.10中的位置b;当模板中心处于边界上时,USAN区域大小为模板大小的一半,如图

18、10.10中的位置c;当模板由图像中逐渐移向图像边缘时,USAN区域逐渐变小,如图10. 10中的位置e。,10.2.3 SUSAN角点检测算法,2、利用SUSAN算法进行角点检测的过程 (1)首先,当模板在图像上进行进行扫描移动时,利用给定的阈值t ,通过对图像中模板内任意像素点与核心像素点灰度差值的比较来判别该像素点是否属于USAN区域。当灰度差值小于或等于阈值t 时,认为该像素点属于USAN区域;当灰度差值大于阈值t 时,认为该像素点不属于USAN区域。其数学表达式为:,(10.24),其中, 为图像中模板核心点像素的位置, 表示图像中的模板除中心以外的其它任意一点的位置; 和 分别表示

19、待定像素点 和 中心像素点的灰度值;t 表示灰度差阈值,阈值取值的大小决定了角点选取的精度。,10.2.3 SUSAN角点检测算法,2、利用SUSAN算法进行角点检测的过程 为了计算可靠,用式(10.25)来代替式(10.24):,(10.25),这样,模板内所有象素点所对应的USAN区域大小就可以表示为:,(10.26),10.2.3 SUSAN角点检测算法,2、利用SUSAN算法进行角点检测的过程 (2)当目标的所有像素点的USAN区域大小得到以后,就可以通过各点的能量响应函数来判断该点是否为角点,各像素点的能量响应函数 定义为:,(10.27),其中, 表示点的USAN区域大小;T 是预

20、先设定的几何门限阈值,用于决定哪些像素点可以视为角点。当目标图像中的某一像素点的USAN区域小于几何门限时,该像素点就被判定为角点,否则就不是角点。,10.2.3 SUSAN角点检测算法,2、利用SUSAN算法进行角点检测的过程 (3)使用非最大抑制(No Max Supperssion,NMS)方法找特征点,即通过将一边缘点作为33模板的中心,在它的8邻域范围内的点进行比较,保留灰度值最大者,这样就可以找出特征点了。,10.2.3 SUSAN角点检测算法,3、虚假角点的剔除 剔除虚假角点的判定方法(USAN的质心和连续性 ):(1)真实角点的USAN区域其重心(质心)的位置远离模板的中心位置

21、,重心公式为:,(10.28),(2)模板内从模板中心指向USAN区域重心的直线上的所有象素必须是USAN区的一部分。,10.2.3 SUSAN角点检测算法,4、SUSAN算法角点检测示例 组合立体积木图中的角点检测算,图中的11个明显的角点都被检测出来了。,(a)原组合立体积木图 (b)SUSAN算子提取的角点结果示例,图10.11 SUSAN算子角点检测立体积木实验图,10.2.3 SUSAN角点检测算法,5、SUSAN的优点和不足 SUSAN 角点检测算法是最早出现的角点检测算法之一,典型的的角点检测算法还有Moravec、Harris和Sift等。,10.3 图像的纹理特征及其描述和提

22、取方法,纹理通常被用来描述物体的表面特征,诸如地形、植被、沙滩、砖墙、岩石、纺织布料、毛质、皮质、墙纸、各种台面等。纹理是一种十分重要的图像特征,它不仅反映了图像的灰度统计信息,而且反映了图像的空间分布信息和结构信息,在模式识别、图像分割与识别、计算机视觉中具有广泛的应用前景。,10.3.1 图像纹理的概念和分类,1、图像纹理的概念 在自然景物中,类似于砖墙那种的具有重复性结构的图案可以看作是一种纹理。在图像中,由某种模式重复排列所形成的结构可看作是纹理。图像纹理反映了物体表面颜色和灰度的某种变化,而这些变化又与物体本身的属性相关。从宏观上看,纹理是物体表面拓扑逻辑的一种变化模式;从微观上看,

23、它由具有一定的不变性的视觉基元(通称纹理基元)组成。不同物体表面的纹理可作为描述不同区域的一种明显特征。,10.3.1 图像纹理的概念和分类,纹理的特征有三点:(1)某种局部的序列性在比该序列更大的区域内不断重复出现。也即纹理是按一定的规则对纹理基元进行排列所形成的重复模式。(2)序列由基本的纹理基元非随机排列组成。也即纹理是由纹理基元按某种确定性的或统计性的规律排列而成的一种结构。(3)在纹理区域内各部分具有大致相同的结构和尺寸。以对应区域具有较为恒定的纹理特征的图像为例,则图像函数的一组局部属性具有是恒定的,或者是缓变的,或者是近似周期性的特征。,10.3.1 图像纹理的概念和分类,几个具

24、有代表性的图像纹理定义: 定义10.1 纹理是一种反映图像中同质现象的视觉特征,体现了物体表面共有的内在属性,包含了物体表面结构组织排列的重要信息以及它们与周围环境的联系。定义10.2 如果图像内区域的局域统计特征或其他一些图像的局域属性变化缓慢或呈近似周期性变化,则可称为纹理。定义10.3 纹理就是指在图像中反复出现的局部模式和它们的排列规则。,10.3.1 图像纹理的概念和分类,几个具有代表性的图像纹理定义: 定义10.4 纹理被定义为一个区域属性,区域内的成分不能进行枚举,且成分之间的相互关系不十分明确。定义10.5 纹理是一种反映像素的空间分布属性的图像特征,通常表现为局部不规则而宏观

25、有规律的特性。定义10.6 纹理具有三大标志:某种局部序列性不断重复、非随机排列和纹理区域内大致为均匀的统一体。,10.3.1 图像纹理的概念和分类,2、图像纹理的分类 从纹理的组成规律角度分类:确定性纹理(规则的或结构的) :纹理是由纹理基元按某种确定性的规律组成的。,人工织物中的5个不同区域的纹理,10.3.1 图像纹理的概念和分类,(b)人工地砖 (c)堆积的食物 (d)合成的水浪,2、图像纹理的分类 从纹理的组成规律角度分类:随机性纹理(不规则的) :纹理是由纹理基元按某种统计规律组成的。,10.3.1 图像纹理的概念和分类,2、图像纹理的分类 从纹理的形成原因角度分类:人工纹理:人工

26、纹理一般由线段、星号、三角形、矩形、圆、某种字母数字等符号有规律地排列组成。人工纹理属于确定性纹理。,(a)人工织物 (b)人工地砖 (c)堆积的食物 (d)合成的水浪,图10.12 人工纹理示例,10.3.1 图像纹理的概念和分类,2、图像纹理的分类 纹理合成示例:,海洋图像,合成图像(初始),合成图像 (一次迭代),合成图像 (四次迭代),10.3.1 图像纹理的概念和分类,2、图像纹理的分类 从纹理的形成原因角度分类:自然纹理:自然纹理是自然景物所呈现的部分重复性的结构,例如砖墙、沙滩、草地等。自然纹理也属于随机性纹理。,(a)砖墙 (b)卵石墙 (c)草 (d)花,图10.13 自然纹

27、理示例,10.3.1 图像纹理的概念和分类,2、图像纹理的分类 从图像的纹理模式角度分类:粗纹理:纹理细粒间具有较大的重复模式。细纹理:纹理细粒间具有较小的重复模式。,细纹理 粗纹理,一些纹理示例:,10.3.1 图像纹理的概念和分类,beeren,flower,food,water,彩色纹理图像,10.3.1 图像纹理的概念和分类,包含多个纹理区域的图象,10.3.1 图像纹理的概念和分类,10.3.2 图像纹理的主要特性及描述与提取方法,1、图像纹理的主要特性 对纹理的特征可定性地用以下一种或几种描述来表征: 粗糙的、细致的、平滑的、颗粒状的、划线状的、波纹状的、随机的、不规则的,等等。纹

28、理是一种有组织的区域现象,其基本特征是移不变性,也即对纹理的视觉感知基本与其在图像中的位置无关。这种移不变性可能是确定性的,也可能是随机的,但也可能存在着介于这两者之间的类别。,10.3.2 图像纹理的主要特性及描述与提取方法,1、图像纹理的主要特性 (1)粗糙度。纹理基元是具有局部灰度特征和结构特征的。纹理的粗糙度与纹理基元的结构及尺寸,以及纹理基元的空间重复周期有关。纹理基元的尺寸大则意味着纹理粗糙,其尺寸小则意味着纹理细致;纹理基元的空间周期长意味着纹理粗糙,周期短则意味着纹理细致。如同在同样观察条件下毛织品要比丝织品粗糙一样。粗糙度是最基本、最重要的纹理特征。从狭义的观点来看,纹理就是

29、粗糙度。,10.3.2 图像纹理的主要特性及描述与提取方法,1、图像纹理的主要特性 (2)方向性。某个像素点的方向性是指该像素点所在的邻域所具有的方向性。所以,纹理的方向是一个区域上的概念,是在一个大的邻域内呈现出的纹理的方向特性。比如,斜纹织物具有的明显的方向性,就是从一个大的邻域内的统计特性角度表现出的纹理特征的方向性。根据纹理自身的方向性,纹理可分为各向同性纹理和各向异性纹理。,10.3.2 图像纹理的主要特性及描述与提取方法,1、图像纹理的主要特性 (2)方向性。,10.3.2 图像纹理的主要特性及描述与提取方法,1、图像纹理的主要特性 (3)规则性。纹理的规则性是指纹理基元是否按照某

30、种规则(规律)有序的排列。如果纹理图像(或图像区域)是由某种纹理基元按某种确定的规律排列而形成,则称为规则性纹理;如果纹理图像(或图像区域)是由某种纹理基元随机性的排列而形成,则称为非规则性纹理。,10.3.2 图像纹理的主要特性及描述与提取方法,1、图像纹理的主要特性 (3)规则性。,2、图像纹理特征描述与提取方法 (1)统计分析法 统计分析法又称为基于统计纹理特征的检测方法,主要包括灰度直方图法、灰度共生矩阵法、灰度行程长度法、灰度差分统计、交叉对角矩阵、自相关函数法等。根据小区域纹理特征的统计分布情况,通过计算像素的局部特征分析纹理的灰度级的空间分布。统计分析法对木纹、沙地、草地这种完全

31、无法判断结构要素和规则的图像的分析很有效。该类方法的优势是方法简单、易于实现,尤其是灰度共生矩阵法是公认的有效方法。,10.3.2 图像纹理的主要特性及描述与提取方法,2、图像纹理特征描述与提取方法 (2)结构分析法 结构分析方法认为纹理基元几乎具有规范的关系,因而假设纹理图像的基元可以分离出来, 并以基元的特征和排列规则进行纹理分割。该方法根据图像纹理小区域内的特点和它们之间的空间排列关系,以及偏心度、面积、方向、矩、延伸度、欧拉数、幅度周长等特征分析图像的纹理基元的形状和排列分布特点,目的是获取结构特征和描述排列的规则。结构分析法主要应用于已知基元的情况,对纤维、砖墙这种结构要素和规则都比

32、较明确的图像分析比较有效。,10.3.2 图像纹理的主要特性及描述与提取方法,2、图像纹理特征描述与提取方法 (3)模型分析法 模型分析方法根据每个像素和其邻域像素存在的某种相互关系及平均亮度为图像中各个像素点建立模型,然后由不同的模型提取不同的特征量,也即进行参数估计。典型的模型分析法有自回归方法、马尔可夫随机场方法和分形方法等。本方法的研究目前进展比较缓慢。,10.3.2 图像纹理的主要特性及描述与提取方法,2、图像纹理特征描述与提取方法 (4)频谱分析法 频谱分析方法又称为信号处理法和滤波方法。该方法是将纹理图像从空间域变换到频率域,然后通过计算峰值处的面积、峰值与原点的距离平方、峰值处

33、的相位、两个峰值间的相角差等,来获得在空间域不易获得的纹理特征,如周期、功率谱信息等。典型的谱分析法有二维傅立叶(变换)滤波方法、Gabor(变换)滤波变换和小波方法等。,10.3.2 图像纹理的主要特性及描述与提取方法,10.3.3 灰度直方图统计矩纹理特征描述与提取方法,基于灰度直方图统计矩的纹理特征描述与提取方法是一种纹理统计分析方法。该方法可以定量的描述区域的平滑、粗糙、规则性等纹理特征。,10.3.3 灰度直方图统计矩纹理特征描述与提取方法,设 为表示图像灰度级的随机变量; 为图像的灰度级数; 为对应的直方图(其中,i=0,1,L-1);则 的均值 表示为:,(10.29),关于均值

34、 的 阶矩表示为:,(10.30),通过计算式(10.30)可知 =1, =0。对于其他阶矩:,10.3.3 灰度直方图统计矩纹理特征描述与提取方法,10.3.3 灰度直方图统计矩纹理特征描述与提取方法,(2)三阶矩三阶矩 是图像直方图偏斜度的量度,它可以用于确定直方图的对称性:当直方图向左倾斜时3阶矩为负;当直方图向右倾斜时3阶矩为正。,10.3.3 灰度直方图统计矩纹理特征描述与提取方法,(3)四阶矩四阶矩 表示直方图的相对平坦性。五阶以上的矩与直方图形状联系不紧密,但它们对纹理描述可提供更进一步的量化。,10.3.3 灰度直方图统计矩纹理特征描述与提取方法,10.3.3 灰度直方图统计矩

35、纹理特征描述与提取方法,10.3.3 灰度直方图统计矩纹理特征描述与提取方法,图10.14(a)原图像及其子图的均值、标准差、平滑度描述子R、三阶矩、一致性、熵等特征。,(a)原图像 (b)纹理区域1 (c )纹理区域2 (d)纹理区域3,(a)原图像 (b)纹理区域1 (c )纹理区域2 (d)纹理区域3,分析可知,均值的结果说明图(b)的整体灰度较亮,图(d)的整体灰度相对较暗,图(c )的整体灰度介于两者之间。平滑度描述子R、一致性、熵的结果可知,图(b)较平滑、一致性较强、熵值较小,图(d)较粗糙、一致性较弱、熵值较大,图(c )的各结果均介于两者之间。图像的三阶矩是图像直方图偏斜度的

36、量度,它可以用于确定直方图的对称性,由计算值可知这三幅图像的直方图均向左倾斜且它们的对称性依次较差,灰度共生矩阵法(Grey Level Co-occurrence Matrix,GLCM)也称为联合概率矩阵法,是一种基于图像中某一灰度级结构重复出现的概率来描述图像纹理信息的方法。该方法用条件概率提取纹理的特征,通过统计空间上具有某种位置关系(像素间的方向和距离)的一对像素的灰度对出现的概率构造矩阵,然后从该矩阵提取有意义的统计特征来描述纹理。灰度共生矩阵可以得到纹理的空间分布信息。,10.3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定义 设纹理图像的大小为 ,图像的灰

37、度级为 。若记 , , ,则可把该图像 理解为从 到G 的一个映射,也即中的每一个像素点对应一个属于该图像 的灰度值:。,10.3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定义 若设纹理图像的像素灰度值矩阵中任意两不同像素的灰度值分别为i 和j ,则该图像的灰度共生矩阵定义为:沿 方向、像素间隔距离为 的所有像素对中,其灰度值分别为i 和j 的像素对出现的次数,记为 。 显然是像素间隔距离为 、方向为 的灰度共生矩阵中第i 行第j 列的元素。生成方向 一般取0、45、90和135四个方向的值。,10.3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定

38、义 对于不同的 ,其灰度共生矩阵的元素定义如下:,10.3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定义 对于不同的 ,其灰度共生矩阵的元素定义如下:,其中:,10.3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定义 对于不同的 ,其灰度共生矩阵的元素定义如下:,其中:,10.3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定义 因此,当 时,44的灰度共生矩阵可形象地理解为如下形式:,10.3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定义 对于不同的 ,其灰度共生矩阵的元素定义如下:, 为生成灰度共生矩

39、阵时像素点之间的距离(步长), 的取值要根据纹理的分布特性进行选取:对于粗糙的纹理, 的值应选取较小一些(一般取1或2),反之,比较平滑的纹理, 的值应选取较大一些(一般取2,3,4或5)。通常要根据纹理特征的提取效果实验性地确定步长。通常情况下, 值取1。,其中:,10.3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定义 对于不同的 ,其灰度共生矩阵的元素定义如下:, 相邻像素点的统计为正向统计结果与反向统计结果之和。比如,当取 =1和 = 时,图像中每一行有2(N-1)个水平相邻像素点对,整个图像总共有2M(N-1)个水平相邻像素点对。当取 =1和 =45时,整个图像

40、共有2(M-1)(N-1)个相邻像素点对。同理可计算出 =90和135时的相邻像素点对的数量。,其中:,10.3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定义 对于不同的 ,其灰度共生矩阵的元素定义如下:, 在 值和 值给定的情况下,有时将灰度共生矩阵 简写。比如 =1和 = 时,简写为 。,其中:,10.3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定义 对于不同的 ,其灰度共生矩阵的元素定义如下(含义):,10.3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定义 对于不同的 ,其灰度共生矩阵的元素定义如下(含义):,10.

41、3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定义 对于不同的 ,其灰度共生矩阵的元素定义如下:,10.3.4 基于灰度共生矩阵的纹理特征提取方法,1、灰度共生矩阵的概念和定义 例10.3.1 已知有图像如图10.16(a)所示,分别计算当 =1时的灰度共生矩阵 、 、 和 。解:根据灰度共生矩阵的定义,通过统计 =1和 等于45, 90,135时,图像中的起点像素灰度值为i ,末点像素灰度值为j 的相邻像素点对的个数,就可分别求出四个灰度共生矩阵如图10.16(b)、(c)、(d)。,10.3.4 基于灰度共生矩阵的纹理特征提取方法,2、灰度共生矩阵的特点 (1)矩阵大

42、。若图像的灰度级为 ,则灰度共生矩阵大小为 。由于一般的256灰度级图像有 ,则对应的灰度共生矩阵的元素就为个 ,显然会导致大的计算量。因此,目前做法是在保证图像纹理特征变化不大的情况下,对图像的灰度级进行归一化处理,也即将256灰度级变换到16灰度级或32灰度级。,10.3.4 基于灰度共生矩阵的纹理特征提取方法,10.3.4 基于灰度共生矩阵的纹理特征提取方法,10.3.4 基于灰度共生矩阵的纹理特征提取方法,2、灰度共生矩阵的特点 (4)矩阵中元素值的分布与图像信息的丰富程度有关。如果元素相对于主对角线越远,且元素值越大,则元素的离散性越大。这意味着相邻像素间灰度差大的比例较高,说明图像

43、中垂直于主对角线方向的纹理较细;相反则说明图像中垂直于主对角线方向的纹理较粗糙。当非主对角线上的元素(归一化)值全为零时,矩阵中元素的离散性最小,则图像中主对角线方向上的灰度变化频繁,具有较大的信息量。,10.3.4 基于灰度共生矩阵的纹理特征提取方法,3、灰度共生矩阵的纹理特征参数 灰度共生矩阵并不能直接提供纹理信息。在实际应用中,对纹理图像进行分析的特征参数是基于该图像的灰度共生矩阵计算出的特征量表征的。所以,为了能描述纹理的状况,还需要从灰度共生矩阵中进一步导出能综合表现图像纹理特征的特征参数,也称为二次统计量。,10.3.4 基于灰度共生矩阵的纹理特征提取方法,3、灰度共生矩阵的纹理特

44、征参数 Haralick等人给出了利用灰度共生矩阵描述图像纹理统计量的14种特征参数,主要有能量(角二阶矩)、对比度、熵、相关性、均匀性、逆差矩、和平均、和方差、和熵、差方差(变异差异)、差熵、局部平稳性、相关信息测度1、相关信息测度2等。Ulaby等人研究发现,在灰度共生矩阵的14个纹理特征参数中,仅有能量、对比度、相关性和逆差矩这4个特征参数是不相关的,且其既便于计算又能给出较高的分类精度。对比度、熵和相关性是3个分辨力最好的特征参数。,10.3.4 基于灰度共生矩阵的纹理特征提取方法,3、灰度共生矩阵的纹理特征参数 设 为图像中像素距离为 、方向为 的灰度共生矩阵的(i ,j )位置上的

45、元素值,下面给出几种典型的灰度共生矩阵纹理特征参数:,10.3.4 基于灰度共生矩阵的纹理特征提取方法,3、灰度共生矩阵的纹理特征参数 (2)对比度,(3)熵,10.3.4 基于灰度共生矩阵的纹理特征提取方法,3、灰度共生矩阵的纹理特征参数 (4)相关性,10.3.4 基于灰度共生矩阵的纹理特征提取方法,3、灰度共生矩阵的纹理特征参数 (5)均匀性,(6)逆差矩,10.3.4 基于灰度共生矩阵的纹理特征提取方法,10.3.5 基于结构方法的纹理描述,结构方法是利用一定的语法规则对纹理的结构进行描述的方法。基本思想是:复杂的纹理结构可以在纹理图元的基础上,借助一些限制图元和排列规则得到。,10.

46、3.6 基于频谱方法的纹理描述,频谱方法是利用傅立叶频谱对纹理进行描述的方法,它适用于描述图像中的具有一定周期性或近似周期性的纹理,它可以分辨出二维纹理模式的方向性,而这是用空间检测方法难以得到的。,10.3.6 基于频谱方法的纹理描述,利用频谱方法描述纹理主要用到傅立叶频谱的3个特性:(1)频谱中突起的尖峰对应纹理模式的主要方向;(2)频率平面中尖峰的位置对应纹理模式的基本周期;(3)将周期性成分滤除后,余下的非周期性成分可以用统计方法描述。,10.4 图像的形状特征,图像中目标的形状特征包括拓扑特征,距离、周长和面积的测量,几何特征,形状方位的描述等。与之相应,图像中目标形状特征可由其几何

47、属性(如长短、距离、面积、周长、形状、凸凹等)、统计属性(如不变矩等)、拓扑属性(如孔、连通、欧拉数)等来描述。,10.4.1 矩形度,目标的矩形度是指目标区域的面积与其最小外接矩形面积之比,反映了目标对其外接矩形的充满程度。矩形度的定义如下:,(10.47),其中, 是最小外接矩形(Mininum External Rectangle)的面积; 是目标区域的面积,可通过对属于该目标区域的像素个数进行统计得到,也即有,(10.48),分析可知R 的取值范围为 ,当目标为矩形时,R 取最大值1;圆形的目标R 取/4。,10.4.2 圆形性,目标圆形性(doularity)是指用目标区域R的所有边

48、界点定义的特征量,其定义式为,(10.49),其中,若设(xi,yi)为图像边界点坐标, 为图像的重心坐标,则:,10.4.2 圆形性,是从区域重心到边界点的平均距离,定义为,(10.50),是从区域重心到边界点的距离的均方差,定义为,(10.51),灰度图像的目标区域的重心定义为,(10.52),10.4.3 球状性,目标的球状性(Sphericity)定义为,(10.53),式(10.53)既可以描述二维目标,也可以描述三维目标。在描述二维目标时,表示目标区域内切圆的半径,表示目标区域外接圆的半径,两个圆的圆心都在区域的重心上,如下图。,分析可知S 的取值范围为。当目标区域为圆形时, 目标的球状性值S 达到最大值1,而当目标区域为其他形状时,则有 。显然。S 不受区域平移、旋转和尺度变化的影响。,10.5 图像的统计特征,在很多实际问题中,当把图像看成二维随机过程中的一个样品来分析时,就可用图像的统计性质和统计分布规律来描述图像,这即是图像的统计特征描述方法。根据概率统计知识可知,图像像素的均值等主要反映了图像中像素的集中趋势,图像像素的方差和标准差主要反映了图像中像素的离中趋势,图像的熵主要反映了图像中平均信息量的多少。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报