收藏 分享(赏)

链增长缩聚反应 Chain Growth Condensation.doc

上传人:jinchen 文档编号:5667605 上传时间:2019-03-11 格式:DOC 页数:36 大小:1.25MB
下载 相关 举报
链增长缩聚反应 Chain Growth Condensation.doc_第1页
第1页 / 共36页
链增长缩聚反应 Chain Growth Condensation.doc_第2页
第2页 / 共36页
链增长缩聚反应 Chain Growth Condensation.doc_第3页
第3页 / 共36页
链增长缩聚反应 Chain Growth Condensation.doc_第4页
第4页 / 共36页
链增长缩聚反应 Chain Growth Condensation.doc_第5页
第5页 / 共36页
点击查看更多>>
资源描述

1、1链增长缩聚反应线型共聚反应中的控制聚合Brigitte Voit, “Condensative Chain Polymerization”A Way Towards “Living” Polycondensation ? Angew. Chem. Int. Ed., 2000, 39(19), 3407-3409Institute fur Polymerforschnug Dresden e.V Hohe Strasse 6, 01069 Dresden (Germany)缩聚技术制造的聚合物是商业聚合物的一个重要的组成部分,制造聚酯和聚酰胺采用的就是 1930s A. Echte, Han

2、dbuch der Technischen Polymerchemie, VCH, Weinheim, 1993建立的熔融缩聚技术。然而,时至今日,如何达到高转化率以实现高分子量的问题还没有彻底解决。与链增长过程不同,缩聚是逐步增长过程,高分子量只有在转化率 90%以上才有可能达到,而且转化率 90%时的理论聚合物只有 10,99% 时达到 100;同时增长不是特定在链末端,而是存在于单体、二聚体、所有的齐聚体之间,一般还是一个平衡反应。因此,缩聚产物通常的分子量分布 Mw/Mn2,其分子量和分子量分布受统计学和转化率控制,一定程度上聚合物末端可以选择单体和反应的立体化学加以控制。链增长聚合则

3、即使在很低的转化率情况下就可以获得高分子量的聚合物,这意味着高分子量的聚合物和大量的单体可以同时存在于聚合过程的任意阶段,分子量可以由单体和引发剂的相对比例控制、功能性末端可通过引发剂或终止剂引入。已有许多控制聚合的方法,离子型和自由基型聚合,使聚合物的分子量分布Mw/Mn1.1。学院系统内用可控方法合成缩聚产物,结构可控和分子量可控,的尝试和努力一直在进行着,如近十年来广泛研究的完全支化聚合物D. A. Tomalia, A. M. Taylor, W. A. Goodard III, Angew. Chem. 1990, 2, 119-238; Angew. Chem. Int. Ed.

4、Engl. 1990, 29 138; M. Fischer, F. Votle, Angew. Chem. 18=999, 111, 934-955; Angew. Chem. Int. Ed. 1999, 38, 884-905和结构明晰的齐聚物的合成,但是由于高成本和规模化问题这些反复进行的合成方法难以转化为生产。近年来,商业聚合物对分子量、多分散性、末端基、分子构筑的高水平控制已成为优先考虑的要求指标,因而从已知的单体和已经确立的技术有可能产生具有新的性质的聚合物新材料。从烯烃的茂金属催化聚合H. H. Brinzinger, D. Fischer, R. Mulhaupt, B. R

5、ieger, R. Waymounth, Angew. Chem. 1995, 107, 1255; Angew. Chem. Int. Ed. Engl. 1995, 34 1143和控制转移自由基聚合D. Colombani, Prog. Polym. Sci. 1997, 22, 1649; E. E. Malmstrom, C. J. Hawker, Macromol. Chem. Phys. 1998, 199, 923; T. E. Pattern, K. Matyjaszewski, Adv. Mater. 1998, 10, 901的链增长聚合领域的迅速发展就可看到这一趋势。神

6、奈川大学(Kanagawa University)Yokozawa(横泽)和 Suzuki(铃木)T. Yokozawa, H. Suzuki, J. Am. Chem. Soc. 1999, 121, 11573发表了目前唯一可能控制缩聚产物分子量和分子量分布的技术:链增长缩聚。详细分析这一技术,其使用合适的单体、引发2剂和特定的反应条件,由聚合物链的活性末端促进增长,实际上是将缩聚反应转化成链增长反应。作者称之为“Condensative chain polymerization”缩合式链聚合,与 IUPAC 对聚合反应的分类I. Mita, R. F. T. Stepto, U. W.

7、Suter, Pure Appl. Chem. 1994, 66, 2483一致,术语表示链增长过程涉及典型的引发、增长、低分子量物质的消除。最早的研究始于 1960s,LenzR. W. Lenz, C. E. Handlovitis, H. A. Smith, J. Polym. Sci. 1962, 58, 351、RobelloD. R. Robello, A. Ulman, E. J. Uranka, Macromolecules, 1993, 26, 6718使用 4-氯苯亚硫酸盐进行自缩聚制备聚苯砜,它们讨论了具有某些活性特征的链增长机理,重要的特征是即使在低转化率时也能获得高分

8、子量产物、最终产物中不含经典逐步聚合不可避免的低聚物。然而,用非环单体合成聚酯时,对分子量、分子量分布、末端基的完全控制还是没有达到。模型研究中,Yokozawa(横泽)和 Shimura(志村)T. Yokozawa, H. Shimura, J. Polym. Sci. Part A 1999, 37, 2607描述了一些适合聚酯合成的单体,如 4-(三甲基硅氧)苯甲酰氯或者 4-溴苯酚和二氧化碳的结合体有使缩合反应以链增长机理进行的潜能。这里,单体 AB 中官能团 B 对 A 的反应活性被官能团 A 与引发剂的反应所增强,如给电子取代基转化成拉电子的取代基,然而此法需在聚合过程中依然有效

9、。要获得良好的可控性,以下这点是必须的:反应只在增长链的末端进行,就是说单体互相之间不发生反应。为满足这样的条件,Yokozawa 和 Suzuki 利用非均相反应、相转移催化剂进行实施(如图 1) ,原则上,相转移催化应用于共聚还不算有新意L .H. Tagle, Handbook of Phase Transfer Catasis (Eds.: Y. Sasson, R. Neuman), Blackie Academic 19b: R=C8H17(18)单体 19 能成功进行链增长缩聚的关键是使用酚氧负离子代替了酚,19 的链增长缩聚是使用酚氧盐代替酚的情况下实现的,酚氧作为强的给电子基

10、团、通过醚键连接,而氟是强的失活基团阻碍 19 与 19 之间的反应,这样 19 就选择性地与引发剂和聚合物末端基反应,进行链增长缩聚(Scheme 2)。12FO19CF3strong deactivationstrong activationstrong EDGinactive reactiveCNR COFEWG CF3 CO FOCNRweak EDGweak deactivationreactive19CF3 CO FOCNRnR: C3H7, C8H17Scheme 2非常有意思的是从链增长缩聚制得的聚醚分子量分布窄,且结晶性比传统缩聚制得的宽分布的聚醚的结晶性强,粉末 X-射线衍

11、射(XRD)谱也更强,示差扫描量热(DSC)图的放热峰在 172oC (冷结晶,从玻璃态开始加热)31,意味着缩聚产物的结晶性可能受到多分散性的控制。聚醚的合成方法可以应用于将单体 20 制备成结构明晰的聚醚砜 Eq. (19),尽管聚合动力学在早期就研究过了 Eq. (2)。引发剂和 18-冠-6 存在下 20 的聚合在环丁砜中 120oC 时进行,分子量可控范围至5700、Mw/Mn1.5。当聚合在较高的单体/引发剂起始比进行时,链增长和逐步聚合皆存在32,不期望的逐步缩聚是由骨架醚键与单体之间的转酯化反应造成的,这是传统高温合成聚醚砜时常见的现象33,34,聚醚酮的相似的链增长缩聚近期也

12、有报道 35。(19)SOCF3 F+18-crown-6/sulfolane120oC 20OSOKO FOSOCF3 O SOO FOn近日,Ueda、Rusanov 及其合作者尝试了单体 21(1-乙炔基-2,5-二己基-4- 碘苯)在 1-乙炔基-2,5-二己基 -4-(2-苯乙炔基 )苯 22 为引发剂、三乙胺为碱条件下 Pd 和 Cu 催化剂作用时的链增长聚合36 ,设计要求是期望聚合物末端的乙炔基的质子酸性较单体的强,基于长的共轭聚合物链,从而产生选择性的碱性夺氢反应,然而,炔基的氧化偶联成为副反应,在 21/22 起始比为 1 或者 2 时,窄分布的聚苯基乙炔成为主要产物。13

13、(20)CIHexHexCH CCHexHexCHCPh+21 2Pd, Cu/Et3NCHexHexCCCHexHexCCPh Hn4. 诱导效应作用下的间位取代单体的聚合间位取代单体的缩聚中,亲核位置对亲电位置的诱导效应(+I effect)可被应用到链增长缩聚,犹如上述对位取代效应一样。在碱 LiHMDS 存在下,3-烷基氨基苯甲酸乙酯 23 聚合时,4- 甲基苯甲酸苯酯为引发剂、 THF 为溶剂、0 oC,得到 N-烷基化聚间苯甲酰胺,分子量可控、分子量分布1.1 Eq. (21) 37。 N-烷基是辛基时,Mn 可由单体和引发剂投料比控制至 12,000,多分散性相当窄。在此聚合中,

14、23 的胺阴离子使间位的酰基失活(强烈的+I 效应) ,从而导致 23 的自身缩聚被抑制,因而 23 的阴离子选择性地与引发剂和聚合物链末端反应,其酰基比单体的酰基更活泼,增长过程依链式聚合进行。(21)LiHMDSHNCOC2H5OR23 NCOR2OR1Inductive EfectStrong EDGles reactiveCOPhOInitator CONCOC2H5ORnLiCH3 CH3从相应的单体可以合成一系列的结构明晰聚间苯甲酰胺 Eq. (22),所有这些聚合物与对位聚苯甲酰胺比,都有较高的溶解度38,尤其是携齐聚乙二醇的聚酰胺甚至在水中都能溶解,显示出可逆的雾点39。NCO

15、R nR:CH3, C2H5, C3H7, C4H9NCOnR:CH3, C9H17OR NCOH nNCOnm; 3,4Om14(22)5. p-共轭聚合物:催化转移聚合有催化剂的缩聚会涉及另一种链增长机理:催化转移机理,催化剂活化聚合物末端基,接着与单体反应,转移催化剂到延长后的聚合物末端,以与生物体中类似的缩聚方式进行。Yokozawa 和 McCullough 等已经建立了 Ni-催化缩聚合成聚噻吩的方法。24a 与 Ni-催化剂是熟知的 McCullough 创立的立构控制性合成聚烷基噻吩的方法,但是所得聚合物的分子量分布较宽40 ,可是当聚合在室温下进行时小心使用异丙基氯化镁(格氏

16、试剂)可从相应的二卤单体产生单体 24a,聚合物的 Mn 正比于单体转化率,同时分子量分布较窄,且分子量为 Ni-催化剂的用量所控制, Mn 正比于起始投料比 24a0:Ni catalyst0 41,42。相似的 Zn 单体也显示出相同的聚合行为43,进一步,当 24a 的聚合被盐酸终止时,Mw/Mn 接近 1.144。详细研究 24a 的聚合之后,有四个要点可以明确: (1) 聚合物末端基是唯一的,一个是溴,另一个是氢;(2) 增长的链末端是聚合物-Ni-Br 配合物; (3) 一个 Ni 分子形成一个聚合物链;(4) 链引发剂是 24a 原位形成的二聚体。以此为基础,催化转移缩聚机理被提

17、出来 (Scheme 3)。因此,Ni(dppp)Cl 2 (dppp = 1,3-bis(diphenylphosphino)propane)与两分子的24a 反应,同时伴随着零价 Ni 配合物的偶联反应,Ni(0) 配合物是不稳定的,插入分子内的CBr 键,另一个 24a 与此 Ni 催化剂反应,随后偶联、 Ni 催化剂转移到下一个 CBr 上,增长以此方式继续,Ni-催化剂就迁移到聚合物链末端 45。近来,Yokozawa 发现窄分布的聚苯炔也可以类似的 Ni 催化转移聚合方式获得46。SClMgBrC6H13Ni(dp)Cl224a SBr NiL2SBrC6H13C6H13 SBr

18、SNiL2C6H13C6H13 Br24a SBr SNiL2C6H13C6H13 SBrC6H13 SBr SC6H13C6H13 SC6H13NiL2BrSBr SC6H13C6H13 SC6H13NiL2Brn SBr SC6H13C6H13 SC6H13Hn5M HClScheme 3链增长缩聚机理是基于取代基效应,由于单体与单体之间的反应导致自身缩聚不能完全被抑制,使其在较高分子量区域控制分子量就较为困难。另一方面,催化转移缩聚由于催化剂迁移到聚合物链末端,单体互相反应也是困难的,也就是说,无论分子量多大理想的分子量控制都可能做到。基于含 Ni 配合物的聚噻吩末端基的本质,利用格式反

19、应可将功能基引入聚合物链的一段或者两端,烯丙基、炔基、烯基格氏试剂提供单官能团聚噻吩,而芳基、烷基格氏试剂15产生双官能团聚噻吩。利用适当的保护基团,羟基、醛基、氨基也能引入聚合物链末端47。6. 其他方法某些元素能转移自引发剂衍生出的活性中心,同时消除小分子。这种情形有二:(1) 单体插入末端 MF 键 Eq. (23);(2) 阳离子活性中心的转移 Eq. (24)。MF+MX MFX-X MMF(23)M+YNu -XY MNuMMX MYNuMXMX+YNuMX MXYNuMX-XY MNuMX(24)二甲基锍甲撑依立德 25 为三烷基硼引发的聚合(Shea 研究成功的聚合方法)即术语

20、本类。增长涉及 25 插入末端的 CB 键、消除二甲基亚砜 (DMSO),聚合在 70-80oC 下甲苯溶剂中进行,其后氧化产生羟基末端的聚甲撑 Eq. (25)。Mn 非常接近单体 25 与三烷基硼投料比计算的理论值,Mw/Mn=1.04 1.17,与活性聚合结果一致。插入机理包括依立德对烷基硼的初始进攻、硼酸酯配合物经烷基的 1,2-迁移产生同源的烷基硼和小分子DMSO。Eq. (26) 48,49.(25)CH2SOMeEt3B70 -80 oCH2O2/NaOHEt(CH2)nCH2O25(26)RCH2B+CH2SOMe25 RCH2BCH2SOMeRCH2 BCH2 SOMeMe+

21、烷基硼参与的同源聚合适合遥爪齐聚物的合成,末端烷基硼极易从 -烯烃的硼氢化反应制备。如两端分别是 4-甲氧基苯基和羟基的聚甲撑可从引发剂 26(4- 乙烯基苯甲醚的BH3-THF 硼氢化产物)合成 Eq. (27)48。其他功能基,如生物锡、碳水化合物、伯胺、仲胺、dansyl 和 pyrene 荧光基团都可以从相应的 -烯烃出发作为端基引入聚合物 50。16(27)MeO BH3-THFMeOCH22B3H2O2/NaOH2)1) 25 26MeOCH22(CH2)nOHB-thexylboracycloheptane 27(1,5- 庚二烯用 thexylborane 硼氢化)为引发剂,甲

22、撑插入CB 键(环上)形成扩环反应,扩张后的含硼环经 NaCN 处理、苯甲酰氯保护、过氧化物氧化得到大环酮 Eq. (28) 51.(28)BH2+ B1)2)NaCn 253) BzCl4)H2O/NaOHCH2O(CH2)nMoskowski 及其合作者近来报道了相似的合成,砷依立德 28、三烷基硼引发的聚合52,53,Mw/Mn = 1.21 1.58,意味着聚合引发并不十分有效,但是增长是可控的,聚合机理可能与 25 的不同,涉及 1,2-重排后的1,3 重排,导致每步增长 3 个碳原子。(29)RB+Ph3As28 Ph3AsBR -Ph3AsRBRB281,3-sigamtropi

23、c rearangement R OHn第二种情形的实例是磷烯胺 29 用亲电试剂引发的聚合,产生聚磷腈。Matyjaszewski及其合作者 发现 N-硅基化磷烯胺 29a 在 100oC、SbCl 5 作用下产生聚(双三氟乙氧基) 磷腈30,Mn - 10,00050,000、Mw/Mn = 1.22.5 54,在未完全转化之前分子量会达到最大值,极可能是转移反应之故。然而,分子量与 SbCl5 量的反比关系、在低转化率时的高分子量、SbCl5 的一级动力学关系都支持 SbCl5 是真正的引发剂和链增长聚合的观点。聚合机理见Eq. (30),反应对单体是零级的,表明反应中间体是在与单体成快

24、速的平衡中形成的,其后经历慢慢的单分子消除三甲基硅三氟乙氧基化合物。Me3SiNP(OCH2F3)SbCl529a 29aMe3SiNP(OCH2F3)Me3SiNP(OCH2F3)NSiMe3P(OCH2F3)reactive intermediate slowMe3SiNP(OCH2F3)NSiMe3P(OCH2F3)2NPOCH2F3OCH2F3 3017(30)Allcock 及其合作者报道三氯(三甲基硅)磷烯胺 29b 在室温下、PCl 5 存在时消除三甲基氯硅烷后聚合,所得聚二氯磷腈用过量的 NaOCH2CF3 处理也得到 30 Eq. (31)。聚合在二氯甲烷中进行时分子量随 2

25、9b/PCl5 比增加(Mw=7,00014,000) ,分子量分布较窄(Mw/Mn = 1.041.20 55。聚合在甲苯中进行时则比在二氯甲烷中快得多,在分子量 105 之内分子量分布很窄(1.3) 56。苯基取代单体 29c,PhCl2P=NSiMe 3,也能进行可控聚合,范围29c/PCl5 投料比 100 以下时。其他如 SbCl5、TaCl5、PhPCl4 引发剂皆能引发 29b 和 29c 在室温下的聚合。(31)Me3SiNPCl3PCl5 NP NPOCH2F3OCH2F330ClCl NaOCH2F329b29b 和两倍量的 PCl5 反应消除三甲基氯硅烷的聚合产生盐,随着

26、 29b 连续地反应、持续地消除三甲基氯硅烷,产生延长的阳离子 Eq. (32)。(32)Me3SiNPCl3PCl5 NPClCl29b2 Cl3PNPCl3PCl629bCl3PNPCl2 PCl6NPCl3Monomer 29b was synthesized by the reaction of PCl5 with either LiN(SiMe3)2 or N(SiMe3)3. These methods give relatively low product yields, because PCl5 is an initiator for the polymerization of

27、 29b. To circumvent this concurrent polymerization, a new method for synthesizing 29b and the subsequent polymerization in one pot has been recently reported 57: PCl3 was reacted with LiN(SiMe3)2 to afford Cl2P-N(SiMe3)2, which was oxidized with SO2Cl2 to yield 29b. To the mixture, mainly containing

28、 29b, Me3SiCl and LiCl, PCl5 was added to produce the polyphosphazene. Under optimized conditions, the polymer 30 showed a relatively narrow molecular weight distribution (Mw/Mn 1.24) even in this one-pot reaction from PCl3 (Eq. (33).(33)NPClClPCl3+LiN(SiMe3)2toluenCl2PN(SiMe3)2SO2Cl2Me3SiNPCl3PCl5

29、NaOCH2F3 NPOCH2F3OCH2F330 29bMonomer 29a can also be polymerized with an anionic catalyst via a chain-growth process, although this polymerization is not included in the second part of Eq. (24). Montague and Matyjaszewski reported this polymerization before the cationic polymerization described abov

30、e. The polymerization was carried out with tetrabutylammonium fluoride (TBAF) as an initiator at 1895 1C to yield 30 with Mw/Mn of about 1.5 58. The proposed polymerization mechanism is as follows. The polymerization is initiated by the abstraction of the silyl group from 29a with TBAF, followed by

31、attack of the resulting phosphazene anion on another monomer. Propagation then proceeds through the attack of the resulting trifluoroethoxide on the silyl group of the growing polymer chain, producing an anion which can then attack another monomer molecule (Eq. (34). Selective desilylation of the po

32、lymer end group can be explained by the possibility that the strength of the NSi bond on a polymer end group is weaker than that on a monomer molecule owing to the conjugation length of the polymer 59.CF3H2OPOCH2F3OCH2F3SiMe33029a(CF3H2O)2PNSiMe3TBAF(CF3H2O)2PN29a(CF3H2O)2PNPOCH2F3OCH2F3NSiMe3CF3H2O

33、(CF3H2O)2PNPOCH2F3OCH2F3N N(34)A quite different approach to chain-growth polycondensation is phase transfer catalyzed-polycondensation of solid monomer dispersed in an organic solvent. We expected that the solid phase of the monomer would prevent the reaction of monomers with each other, and that t

34、he monomer dissolving in an organic solvent with the aid of a phase transfer catalyst (PTC) in a certain amount would react with an initiator and the polymer end group in the solution phase. The solid monomer potassium 4-bromomethyl-2-octyloxybenzoate 31 was polymerized in the presence of 18-crown-6

35、 as a PTC and 4-nitrobenzyl bromide 32 as the initiator in acetone (Scheme 4) 60. The polymerization successfully proceeded by chain-growth to yield polyesters with Mw/Mn less than 1.3 until the feed 310:320 reached 15. With a ratio of 20 or above, the control of polymerization was not perfect: poly

36、mers having Mn values close to the calculated ones were obtained as well as oligomers without the initiator 32 unit. Similar chaingrowth polymerization was also attained with tetrabutylammonium iodide as the PTC instead of 18-crown-6 61.19Solid phaseKBrLiquid phasemonmer esrvoirCOKC8H17OBr KBrKCOC8H

37、17OBrCOC8H17OBrO2N n+1COC8H17OBrO2N npolymer phaseScheme 47. 构建缩聚物构筑中的应用具活性聚合特征的缩聚的发展使缩聚物构筑能以烯基和环状单体类似的活性聚合方式构建。7.1. 嵌段共聚物Block copolymers of aromatic polyamides have been synthesized by chain-growth polycondensation of 4-(alkylamino)benzoic acid esters 16. An example is the block copolymer of N-alk

38、yl and N-H polyamides shown Eq. (35) 62. First, N-octyl monomer 16a was polymerized, and then monomer 16c, with a protecting group on the amino group, and a base were added to the reaction mixture. The added 16c polymerized smoothly from the ends of the poly16a chains to yield the block copolymer of

39、 poly16a and poly16c. The protecting group was quantitatively removed with trifluoroacetic acid to afford the desired block copolymer of N-alkyl and N-H polyamides with narrow polydispersity. The reason 16c was used for this block copolymerization was that a monomer with a primary amino group did no

40、t polymerize under the polymerization conditions 63. The block copolymer self-assembled in THF by virtue of intermolecular hydrogen bonding of the N-H polyamide unit. Scanning electron microscopy (SEM) images showed micrometer-sized bundles and aggregates of flake-like structures.20OPhCO2N OPhCHNOB:

41、 4-octyloxybenzyl+ base COO2N OPhCNOB nOPhCO2N OPhCHNC817+ base COO2N OPhCN8H17 mOPhCHNOBbase COO2N CON8H17 m OPhCNOB nCF3OH COO2N CON8H17 m OPhCHN nbase=Et3NC8H17Ph /CsF /18-crown-6(35)嵌段共聚酰胺:Mn=3000+3000, Mw/Mn=1.10 ,特殊结构Under the conditions for the polycondensation of ethyl 3-(alkylamino)benzoate

42、 23 with LiHMDS as the base, a well-defined diblock copolymer of meta- and para-substituted poly(benzamide) was synthesized. Ethyl 3-(octylamino)benzoate 23a was polymerized with 2.2 equivalents of LiHMDS at 0 1C to give a prepolymer. A fresh feed of methyl 4-(octylamino)benzoate 16b was added to th

43、e prepolymer in the reaction mixture at the same temperature to obtain the block copolymer. It should be noted that excess LiHMDS in the polymerization of 23a as the first step did not react at all with the terminal ester moiety of poly23a, which was able to initiate the polymerization of 16b as the

44、 second step 37.(36)COCH3 PhHNC817COC2H5OLiHMDS 2. equiv NHC817 COCH3ONC8H17CNOCH3 CO C8H17 COOCH3n mChain-growth polycondensation leading to polyesters also enabled the synthesis of well-defined block polyesters bearing various side chains (Eq. (37) 28.21(37)COBzONSCO COHONSCOR COHONSCOC817Et3SiH/C

45、sF/18-crown-6-30oCCOBzO COR COC8H17O NSCOn mR: (CH2)3OCH22OCH3聚酯In the catalyst-transfer polycondensation of Grignard thiophene monomer 24a, monomer 24b with a different alkyl side chain was added to the reaction mixture after consumption of 24a to yield a block copolymer of polythiophenes (Eq. (38)

46、 42,64.(38)SBrC6H13ClMg Ni(dp)Cl2THF SC6H13nSHC12H3mSBrC12H5ClMg SBrC6H13聚噻吩Shea et al. synthesized a-hydroxy-o-(p-methoxyphenyl)polymethylene -b-polyperdeuteriomethylene by using the polymerization of dimethylsulfoxonium methylide 25 initiated by trialkylborane. Thus, hydroboration of p-vinylanisol

47、e with BH3 was first carried out, and a solution of 25 was added. Following consumption of ylide, a solution of perdeuterio 25 was added. After consumption of the second batch of ylide, the tris-polyhomologated alkylborane was oxidized to the terminal alcohol (Eq. (39) 48. The polymerization of diff

48、erent arsonium ylides containing 28 initiated by trialkylborane also gave block copolymer (Eq. (40) 53.22(39)COKO F COO n(40)COKO F COO nPolyphosphazene block copolymers have also been synthesized. Matyjaszewski et al. performed the successive anionic polymerizations of N-silylphosphoranimines 29d a

49、nd 29a at 133 1C to yield the block copolymer with Mw/Mn of 1.42.3 (Eq. (41) 59,65. However, owing to the presence of two possible leaving groups in 29d, this approach yielded block copolymers where one of the block segments contained a mixture of side groups. On the other hand, Allcock et al. polymerized 29b with PCl5 at ambient temperature, followed by addition of a second phosphoranimine, to obtain block copolymer with Mw/Mn of 1.11.4, where each block segment

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 社会民生

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报