1、25.2. 用“树形图”求概率,复习,当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.,一个因素所包含的可能情况,另一个因素所包含的可能情况,两个因素所组合的所有可能情况,即n,在所有可能情况n中,再找到满足条件的事件的个数m,最后代入公式计算.,列表法中表格构造特点:,当一次试验中涉及3个因素或更多的因素时,怎么办?,当一次试验中涉及3个因素或更多的因素时,用列表法就不方便了.为了不重不漏地列出所有可能的结果,通常采用“树形图”.,树形图,树形图的画法:,一个试验,第一个因素,第二个,第三个,如一个试验中涉及3个因素,第一个因素中有2
2、种可能情况;第二个因素中有3种可能的情况;第三个因素中有2种可能的情况,A,B,1,2,3,1,2,3,a,b,a,b,a,b,a,b,a,b,a,b,则其树形图如图.,n=232=12,例题,例1 同时抛掷三枚硬币,求下列事件的概率: (1) 三枚硬币全部正面朝上; (2) 两枚硬币正面朝上而一枚硬币反面朝上; (3) 至少有两枚硬币正面朝上.,正,反,正,反,正,反,正,反,正,反,正,反,正,反,抛掷硬币试验,解:,由树形图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等., P(A),(1)满足三枚硬币全部正面朝上(记为事件A)的结果只有1种, P(B),(2)满足两枚硬币正面
3、朝上而一枚硬币反面朝上(记为事件B)的结果有3种,(3)满足至少有两枚硬币正面朝上(记为事件C)的结果有4种, P(C),第枚,例题,例2.甲、乙、丙三人打乒乓球.由哪两人先打呢?他们决定用 “石头、剪刀、布”的游戏来决定,游戏时三人每次做“石头” “剪刀”“布”三种手势中的一种,规定“石头” 胜“剪刀”, “剪刀”胜“布”, “布”胜“石头”. 问一次比赛能淘汰一人的概率是多少?,解:,由树形图可以看出,游戏的结果有27种,它们出现的可能性相等.,由规则可知,一次能淘汰一人的结果应是:“石石剪” “剪剪布”“ 布布石”三类.,而满足条件(记为事件A)的结果有9种, P(A)=,例3:甲口袋中
4、装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I.从3个口袋中各随机地抽取1个小球。 (1)取出的3个小球上恰好有1个、2个、和3个元音字母的概率分别是多少? (2)取出的3个小球上全是辅音字母的概率是多少?,分析:当一次试验要涉及3个或更多的因素(例如 从3个口袋中取球)时,列方形表就不方便了,为 不重不漏地列出所有可能结果,通常采用树形图。,解:根据题意,画出如下的“树形图”,甲,乙,丙,A,B,C,D,E,H,I,C,D,E,H,I,H,I,H,I,H,I,H,I,从树形图看出,所有可能
5、出现的结果共有12个,A C H,A C I,A D H,A D I,A E H,A E I,B C H,B C I,B D H,B D I,B E H,B E I,(1)只有一个元音的字母的结果(红色)有5个,有两个元音的字母的结果(绿色)有4个,有三个元音的字母的结果(蓝色)有1个,(2)全是辅音字母的结果(黑色)有2个,用树状图和列表的方法求概率的前提:,各种结果出现的可能性务必相同.,注意:,1.经过某十字路口的汽车,它可能继续直行, 也可能向左转或向右转,如果这三种可能性 大小相同。三辆汽车经过这个十字路口,求 下列事件的概率: (1)三辆车全部继续直行; (2)两辆车向右转,一辆车
6、向左转; (3)至少有两辆车向左传。,练习,第 一 辆,左,右,左,右,左直右,第 二 辆,第 三 辆,直,直,左,右,直,左,右,直,左直右,左直右,左直右,左直右,左直右,左直右,左直右,左直右,共有27种行驶方向,解:画树形图如下:,(3)至少有两辆车向左传,有7种情况,即:,左左左,左左直,左左右,左直左, 左右左,直左左,右左左。,2.在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,在随机摸取出一张纸牌. (1)计算两次摸取纸牌上数字之和为5的概率; (2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸
7、出纸牌上数字之和为偶数,则乙胜。这 是个公平的游戏吗?请说明理由.,解:用树状图法。,由上表可以看出,摸取一张纸牌然后放回,再随机摸取出纸牌,可能结果有16种,它们出现的可能性相等.,(1)两次摸取纸牌上数字之和为5(记为事件A)有4个,P(A)= =,(2)这个游戏公平,理由如下: 两次摸出纸牌上数字之和为奇数(记为事件B)有8个,P(B)= =两次摸出纸牌上数字之和为偶数(记为事件C)有8个,P(C)= = 两次摸出纸牌上数字之和为奇数和为偶数的概率相同,所以这个游戏公平.,3.甲、乙、丙三个布袋都不透明,甲布袋中装有1个红球和1个白球;乙布袋中装有1个红球和2个白球;丙布袋中装有2个白球
8、,这些球除颜色外都相同,从这匹个布袋中各随机地取出1个小球. (1)取出的3个小球恰好是2个红球和1个白球概率是多少? (2)取出的3个小球恰好全是白球的概率是多少?,4.如图所示,小吴和小黄在玩转盘游戏,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜;否则小黄胜。(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形区域为止),(1)这个游戏规则对双方公平吗?说说你的理由; (2)请你设计一个对双方都公平的游戏规则。,想一想,(1) 列表法和树形图法的优点是什么? (2)什么时候使用“列表法”方便?什么时候使用“树形图法”方便?,利用树形图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.当试验包含两步时,列表法比较方便,当然,此时也可以用树形图法;当试验在三步或三步以上时,用树形图法方便.,课堂小节,(一)等可能性事件的两的特征: 1.出现的结果有限多个; 2.各结果发生的可能性相等;,(二)列举法求概率 1利用列举法求概率的关键在于正确列举出试验结果的各种可能性,而列举的方法通常有直接分类列举、列表、画树形图等.,