1、1课题:圆和扇形(复习)【教学目标】1、 通过复习圆的周长、面积,弧长以及扇形面积的计算公式,掌握公式以及公式之间的联系.2、 通过圆和扇形公式的相关应用,体会数形结合思想和方程思想,体验数学与生活的联系.【教学重难点】重点:圆和扇形公式的掌握.难点:圆和扇形公式的应用.【教学过程】一、公式回顾:1、填一填(表 1):半径 圆的周长 圆的面积cm4cm填一填(表 2):圆心角 半径 弧长 扇形的面积3610c10 6.28c5m10m二、基础练习:1、铁环的直径是 2 分米,滚动了 50 圈,那么铁环滚了_米.2、一个圆形花坛的半径是 3 米,沿它的外侧铺一条 1 米的小路,那么这条小路的面积
2、是_平方米.3、一个扇形的圆心角是 ,那么扇形的面积占它所在圆面积的_.(几分之几)1504、小明家的闹钟时针长 ,从上午 8 点到中午 12 点:时针的针尖经过的路程是_6cm厘米.(结果保留 )2三、例题变式:【例 1】已知两圆的半径之比是 ,大圆的半径是 ,求小圆的周长.4:918cm(变式 1)已知两圆的周长之比是 ,大圆的半径是 ,求小圆的面积.4:918c(变式 2)已知两圆的面积之比是 ,大圆的半径是 ,求小圆的周长.4:918cm(变式 3)已知甲乙两个扇形的面积之比是 ,求甲扇形所在的圆心角是多少度?3:2【例 2】小华要在一个边长为 的正方形中剪下一个圆,要使得这个圆的面积最大,那6dm么这个圆的面积是多少平方厘米?(变式 1)小华要在一个长为 ,宽为 的长方形中剪下一个圆,要使得这个圆的面6dm4积最大,那么这个圆的面积是多少平方厘米?(变式 2)小华要在一个半径为 的半圆形纸片中剪下一个圆,要使得这个圆的面积20cm最大,那么剩下部分的纸片面积是多少平方厘米?四、课堂小结:这节课我们复习了什么?请谈谈你的收获.五、作业布置:.甲 乙3练习册:复习题.