1、本科生期末考试试卷统一格式(16 开):20 20 学年第 学期期末考试试卷化工热力学 (A 或 B 卷 共 页)(考试时间:20 年 月 日)学院 专业 班 年级 学号 姓名 题号 一 二 三 四 五 六 七 八 九 十 成绩得分一、 简答题(共 8 题,共 40 分,每题 5 分)1. 写出封闭系统和稳定流动系统的热力学第一定律。答:封闭系统的热力学第一定律: WQU稳流系统的热力学第一定律: sZguH212. 写出维里方程中维里系数 B、C 的物理意义,并写出舍项维里方程的混合规则。答:第二维里系数 B 代表两分子间的相互作用,第三维里系数 C 代表三分子间相互作用,B 和 C 的数值
2、都仅仅与温度 T 有关;舍项维里方程的混合规则为: , ,nijijiMBy1 10ijijcijij BpR, , ,6.104283.prijT2.47039.prijTBcijr, , ,5.0cjiijcijkcijcijVRZ3135.0Cjicij V,jciijZZ5.0ij.3. 写出混合物中 i 组元逸度和逸度系数的定义式。答:逸度定义: (T 恒定)iii fRdypTdln,1lm0ipf逸度系数的定义: iiyf4. 请写出剩余性质及超额性质的定义及定义式。答:剩余性质:是指同温同压下的理想气体与真实流体的摩尔广度性质之差,即: ;超额性质:是指真实混pTMid,合物与
3、同温同压和相同组成的理想混合物的摩尔广度性质之差,即:idmME5. 为什么 K 值法可以用于烃类混合物的汽液平衡计算?答:烃类混合物可以近似看作是理想混合物,于是在汽液平衡基本表达式中的 , ,在压力不高的情况下,Ponding 因子近似1iivi为 1,于是,汽液平衡表达式化简为: 。由该式可visiidpxyK以看出,K 值仅仅与温度和压力有关,而与组成无关,因此,可以永 K 值法计算烃类系统的汽液平衡。6. 汽相和液相均用逸度系数计算的困难是什么?答:根据逸度系数的计算方程,需要选择一个同时适用于汽相和液相的状态方程,且计算精度相当。这种方程的形式复杂,参数较多,计算比较困难。二、 推
4、导题(共 2 题,共 15 分,其中第一题 8 分,第二题 7 分)1. 请推导出汽液相平衡的关系式。 (其中:液相用活度系数表示,以Lewis-Randell 规则为基准;汽相用逸度系数表示。 )答:根据相平衡准则,有 ;其中,等式左边项可以根据逸度系数的定义livif式变形为: ;等式的右边项可以根据活度系数的定义式变形为:ivipyf,而标准态取为同温同压下的纯液体,于是有iilixf,带入相平衡准则,得到:RTVsilisiiepxpysiliisivi2. 从汽液相平衡的关系式出发,进行适当的假设和简化,推导出拉乌尔定律。答:1) 压力远离临界区和近临界区时,指数项 。1expRTV
5、sili2) 若体系中各组元是同分异构体、顺反异构体、光学异构体或碳数相近的同系物,那么,汽液两相均可视为理想化合物,根据Lewis-Randall 规则,有 ;同时, 。ivi1i3) 低压下,汽相可视为理想气体,于是有: , 。visi综上所述,汽液平衡体系若满足 1) ,2) ,3) ,则: ,即iixpy为拉乌尔定律。三、 计算题(共 4 题,共 45 分,其中第一题 15 分,第二题 15 分,第三题 5 分,第四题 10 分)1. 求某气体在 473 K,3010 5 Pa 时,H m=?已知:pV m=RT+10-5p,其中:p 单位 Pa,V m 单位 m3mol-1,Cpid
6、 = 7.0+1.0 10-3 T (Jmol-1K-1)。设:该饱和液体在 273 K 时,H m=0 (Jmol-1) 。其中安托尼常数A=20.7,B=2219.2,C=-31.13。 (安托尼方程中压力 p:Pa,T:K,压力用自然对数表示) (设 z =1 )答:首先涉及路径,273 K 饱和蒸汽压下的气体可近似视为理想气体。13./297.20/lnKtPapsi-2824273273.1TTsidkJmol-1 48lnpZRHsivkJmol-16.1501.07323-4732 ddCigpigVm=RT/p+10-5 510TJmol-135230dpHRkJmol-11.
7、742RigvmmH2. 有人提出用下列方程组来表示恒温恒压下简单二元体系的偏摩尔体积: 22 11)(bxaV273K, pis, l 473K, 3MPa, g273K, pis, ig 473K, 3MPa, igHv RH2igH其中:V 1 和 V2 是纯组分的摩尔体积,a 、b 只是 T、p 的函数,试从热力学角度分析这些方程是否合理?答:由于该方程涉及到偏摩尔性质和温度压力等参数,因此如果该方程合理,必须要满足 Gibbs-Duhem 方程。首先,衡量等温等压下的 Gibbs-Duhem 是否满足:即: 。对二元体系,做衡等变形,得:021Vdx021dxVx由已知得: , 。于是,有:112bxa22bxad,因此,该表达式不合理。0121 dxVx