1、4.4 矩形、正方形(第 2 课时)教学目标:1.掌握正方形的定义,弄清正方形与平行四边形、菱形、矩形的关系。2.掌握正方形的性质定理 1 和性质定理 2。3.正确运用正方形的性质解题。4.通过四边形的从属关系渗透集合思想。5.通过理解四种四边形内在联系,培养学生辩证观点。教学重点、难点和疑点1.重点:正方形的性质。2.难点:正方形性质的应用。3.疑点:平行四边形,矩形,菱形,正方形之间的共性,特性及从属关系(可以通过画图,简单的集合关系图,举反例等来说明) 。教学方法:归纳法。教学过程:(一)复习提问1.让学生叙述平行四边形、矩形、菱形的定义和它们的特殊性质。2.说明平行四边形,矩形,菱形的
2、内在联系。(二)引入新课矩形和菱形都是特殊的平行四边形,那么更加特殊的平行四边形是什么图形?它又有什么特殊性质呢?这一堂课就来学习这种特殊的图形正方形 。(三)讲解新课1.正方形的定义因为学生对正方形很熟悉,所以可以直接介绍正方形的定义。有一组邻边相等,有一个角是直角的平行四边形叫做正方形。如图 448。 教师问:正方形是在什么前提下定义的?学生答:平行四边形。教师再问:包括哪两层意思?学生答:(1)有一组邻边相等的平行四边形(菱形) 。 (2)并且有一个角是直角的平行四边形(矩形) 。画图表示正方形与矩形,正方形与菱形的从属关系如图 449。2.正方形的性质因为正方形是特殊的平行四边形,还是
3、特殊的矩形,特殊的菱形,所以它具有这些图形性质的综合,因此正方形有以下性质(由学生和老师一起总结) 。正方形性质定理 1:正方形的四个角都是直角,四条边相等。正方形性质定理 2:正方形的两条对角线相等并且互相垂直平分,每一条对角线平分一组对角。说明:定理 2 包括了平行四边形,矩形,菱形对角线的性质,一个题设同时有四个结论,这是该定理的特点,在应用时需要哪个结论就用哪个结论,并非把结论写全。例 1 如图 450,求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形 补充例题:如图 451,已知正方形 ABCD,延长 AB 到 E,作 AGEC 于 G,AG 交 BC于 F,求证:AFCE。小结: (1)正方形与矩形,菱形,平行四边形的关系如图 452。(2)正方形的性质:正方形对边平行。正方形四边相等。正方形四个角都是直角。正方形对角线相等,互相垂直平分,每条对角线平分一组对角。