1、相交线与平行线复习教案一学习目标及重难点处理(一)学习目标:“平面内两条直线的位置关系”是“空间与图形”知识方法体系发展中的基本问题知识结构如下图所示:(二)重难点处理:是垂线的概念与平行线的判定和性质以及平移内容,因为这些知识是空间与图形领域的基础知识,在以后的学习中经常要用到,这部分内容掌握不好,将会影响后续内容的学习直线的位置关系是通过有关角的知识反映出来的,理解好与相交线、平行线有关的角的知识:对项角、邻补角、三线八角。二学习目标及重难点处理(一)、对顶角和邻补角的概念1概念:在相交的两条直线得到的四个角中,(1)有公共顶点,没有公共边的两个角叫做对顶角。如图中的1 和2,3 和4。(
2、2)有一个公共顶点,还有一条公共边的两个角叫做邻补角。如图中的1 与3,2 和4。邻补角也可以看成是:一条直线与端点在这条直线的一条射线组成的两个角。指出:邻补角是两个角互补的特殊关系,如下图。2练习:练习 1:辨别图形:下图中两角是对顶角吗?答案:都不是对顶角。练习 2:找图中,1 的邻补角。答案:(1)1 的邻补角有:AOF 和BOE;(2) 1 的邻补角有:AOD.练习 3:判断:两直线相交,对顶角相等。答案:正确3证明猜想,形成定理:已知:如图,直线 AB 与直线 CD 相交于 O 点求证:1=3,2=4证明:因为1+2=180,(邻补角定义) 3+2=180,(邻补角定义)所以1=3
3、 (同角的补角相等)同理:2=4因此,我们可以得到:对顶角的性质是“对顶角相等” 角的名称特征 性质 相同点 不同点对顶角两条直线相交而成的角有一个公共顶点没有公共边对顶角相等都是两条直线相交而成的角,都有一个公共顶点,它们都成对出现。对顶角没有公共边,而邻补角有一条公共边,两条直线相交时,一个角的对顶角有一个,一个角的邻补角有两个。邻补角来源:Zxxk.Com来源:学科网两条直线相交而成的角有一个公共顶点有一条公共边来源:学科网 ZXXK邻补角互补来源:Zxxk.Com4例题:例如图,(1)已知直线 AB,CD 相交于点 0,(2)已知直线 AE,BD 相交于点 C图中哪些角是邻补角? 哪些
4、角是对顶角?答:(1)邻补角是DOA 与AOC,AOE 与EOB,BOC 与COA,COE 与DOE,DOA与DOB,DOB 与BOC;对顶角是AOD 与COBAOC 与DOB。(2)邻补角是ACB 与ACD,ECD 与DCA,DCE 与ECB,ECB 与ACB;对顶角是ACB 与DCE,BCE 与ACD(二)、垂直1垂直的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。它们的交点叫做垂足。2垂线的性质:过一点有且只有一条直线与已知直线垂直。(1)“过一点”有几种情况? (2)“有且只有”什么意思?答案:(1)此点在直线上或直线外
5、;(2)存在性和唯一性。3练习:过点 P 分别向角的两边作垂线。答案:略(三)、同位角、内错角、同旁角的概念1概念:角的名称 位置特征 基本图形 图形结构特征同位角 在两条被截直线同旁,在截线同侧去掉多余的线体现基本图形形 如字母“F”(或倒“F”形)内错角 在两条被截直线之内,在截线两侧(交错)去掉多余的线体现基本图形形如字母“Z”(或反置)同旁内角 在两条被截直线之内,在截线同侧去掉多余的线体现基本图形形如字母“U”2. 练习:练习 1、如图 1,找出右图中所有的同位角、内 错角、同旁内角。答案:(1)同位角:1 与6,2 与5,3 与6,4 与7;内错角:1 与6,4 与5;同旁内角:1
6、 与5,4 与6.(2)同位角:1 与3,2 与4;内错角:无; 同旁内角:2 与3.练习 2、如图 2,直线 a、b 被直线 c 所截的角中,找出同位角、内错角、同旁内角。答案:(1)同位角:1 与5,2 与6,3 与8,4 与7;内错角:2 与8,4 与5;同旁内角:2 与5,4 与8.(四)直线平行的条件1三线八角:先结合生产实践中工匠师傅们的经验做法,探求其理论实质,在下列图示中辨认三线八角:2直线的平行 (重点知识讲解):(1)平行线的概念:在同一平面内,不相交的两条直线叫做平行线若两条直线 a,b 互相平行,记作 ab强调两条直线不重合。(2)平行公理:经过直线外一点有且只有一条直
7、线和这条直线平行(如图 1)平行公理推论:如果两条直线都平行于同一条直线,那么这两条直线互相平行(简单说成:平行于同一直线的两直线平行)(如图 2)即:如图 3,若 ac,bc,则 ab已知:若 ac,bc,求证:ab证明:假设直线 a 与直线 b 不平行,那么直线 a 与 b 相交,设交点为 M因为 ac,bc,所以点 M 在直线 c 外,这样过点 M 有两条直线 a,b 与直线 c 平行,与平行公理矛盾所以,假设直线 a 与直线 b 不平行错误,因此只有 ab(3)平行线的判定:直接根据平行线的定义来判断两条直线是否平行是非常困难的一件事人们在实践中总结、归纳、证明出利用角的关系来判断两条
8、直线是否平行()同位角相等,两直线平行; (公理)()内错角相等,两直线平行;()同旁内角互补,两直线平行()平行于同一条直线的两条直线互相平行()在同一平面内,垂直于同一条直线的两条直线互相平行证明如下:已知:如图,在同一平面内,CDAB 于 D 点,EFAB 于 F 点,求证:CDEF证明: CDAB 于 D 点,EFAB 于 F 点(已知), CDB=EFB=90(垂线定义)又 CD、EF 在同一平面内, CDEF(同位角相等,两直线平行) 注意:(1)平行线的性质定理与平行线的判定定理是互为逆命题的关系即命题的题设与结论对调(2)平行线的判定定理是平行线作图的理论依据例如:过直线 外一
9、点 P 作直线l21/l(4)平行 线的性质()由平行线的定义可知:若两条直线平行,则这两条直线在同一平面内,且没有公共点()平行线的传递性:平行于同一条直线的两条直线互相平行()如果两条平行线被第三条直线所截,那么同位角相等、内错角相等、同旁内角互补即:两条直线平行,同位角相等;两条直线平行,内错角相等;两条直线平行,同旁内角互补()如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直证明如下:已知:如图 ,ABCD,直线 MNAB 于 E 点,交 CD 于 F 点求证:直线 MNCD证明:(欲证 MNCD 于 F,只要证MFD=90) ABCD MFD=MEB又 MNAB 于
10、 E, MEB=90 MFD=90 MNCD ()平行线间的平行线段相等(如图) ()平行线间的距离处处相等(如图) (如图所示,请同学们自证)3命题:要求在学过一些命题(包括数与代数的以及空间与图形的)的基础上,了解命题的概念以及命题的构成(如果那么的形 式),知道一个命题可能是正确的,也可能是错误的,不宜在这里过多要求4例题:1)下列命题正确的是( )A内错角相等B相等的角是对顶角C三条直线相交,必产生同位角、内错角、同旁内角 D同位角相等,两直线平行2) 两平行直线被第三条直线所截,同位角的平分线( )A互相重合 B互相平行 C互相垂直 D相交3)如图,已知1=B,2=C,则下列结论不成
11、立的是( )AAD BC BB=CC2+B=180 DABCD4)如图,若 ABCD,则A、E、D 之间的关系是( )AA+E+D=180 BA-E+D=180CA+E -D=180 DA+E+D=2705)如图 a,1=82,2=98,3=80,则4 的度数为_6)如图 b,ADBC,AC 与 BD 相交于 O,则图中相等的角有_对7)如图 c,已知 ABCD,1=100,2=120,则a=_ 答案:1)D 2) B 3)B 4) C 5) 80 6) 4 7)405平移:教学目标:通过具体实例认识平移,理解对应点连线平行且相等的性质,能按照要求作出简单平面图形平移后的图形,能用平移进行简单
12、的图案设计,认识和欣赏平移在现实生活中的应用二典型例题解析:例 1已知:如图,ABDC,(1)若 ADBC,求证:A=C;(2)若A=C,求证:ADBC证明:(1) ABDC(已知), A+D=180(两直线平行,同旁内角互补)即 A=180-D ADBC, (已知) C+D=180(两直线平行,同旁内角互补)即 C=180-D由, A=C(2) ABD C(已知) , A+D=180(两直线平行,同旁内角互补)又 C=A(已知), C+D=180, C+D=180, ADBC(同旁内角互补,两直线平行) 例 2已知:如图,CDEF,1=65,2=35,求3 与4 的度数分析:3=180-2-
13、ENA,而在 CDEF 的条件下,ENA=1,4=180-MNF=180-3解: CDEF(已知), ENA=1=65(两直线平行,同位角相等) 3=180-2-ENA(平角定义)=180-35-65=80,即 3=80 CDEF(已知), 4+MNF=180(两直线平行,同旁内角互补) 4=180-MNF=180-3(对顶角相等)=180-80=100即4=100综上,3=80,4=100例 3已知:如图,ABCD,则图中 、 、 三个角之间的数量关系为( )A、 360B、 18C、 D、 90解:过 E 点作 EFAB ABCD, EFCD(平行于同一条直线的两直线平行) EFCD, F
14、ED=D(两直线平行,内错角相等) ABEF, A+AEF=180(两直线平行,同旁内角互补),即 (180180答:选 C小结:为了便于找到角与角之间的相等关系,作平行线是今后学习和解决问题时,常用的辅助线例 4已知:如图,直线 AB、CD 被直线 EF 所截,且EMB=CNF,试确定直线 AB 与 CD 的位置关系,并说明你的理由解:ABCD理由如下: AMN=EMB,MND=CNF(对顶角相等) ,EMB=CNF(己知), AMN=MND(等量代换) AMN=MND, ABCD(内错角相等,两直线平行) 例 5在小学,学习对“几何的初步认识”我们知道:一个三角形 的三个内角之和等于180
15、,现在学习了平行线性质以后,你能说出这是为什么吗?已知:三角形 ABC,求证:A+B+C=180分析:设法将A、B、C 拼成一个平角证明:过 A 点作 EFBC则EAB=B,FAC=C(两直线平行,内错角相等) B+BAC+C=EAB+BAC+CAF=180(平角定义), A+B+C=180引申:三角形的一个外角是不相邻的两个内角和。例 6判断题(1) 一条直线可以看成一个平角,一条射线可以看成一 个周角。 ( )(2) 若几个角的和等于 90,那么这几个角互为余角。( )(3) 过直线外一点作这条直线的垂线和斜线,垂线最短。 ( )(4) 如果对顶角互补,那么构成对顶角的两条直线互相垂直。(
16、 )(5) 与同一条直线相交的两条直线相交。( )(6) 过直线外一点有且只有一条直线与已知直线平行。( )答案:只有(4) , (6)两题正确例 7选择题(1) 若 、 为锐角,则 满足( )A B090 180C D (2) 如图,直线 a 与直线 b 互相平行,则|x-y|的值是 ( )A20 B80 C120 D180(3) 如图,ABCD,直线 EF 分别交 AB,CD 于 E,F 两点,BEF 的平分线交 CD 于点 G,若EFG=72,则EGF 等于( )A36 B54 C72 D108(4) 探照灯、锅形天线、汽车灯以及其它很多灯具都与抛物线形状有关,如图所示是一探照灯灯碗的纵
17、剖面,从位于 D 点的灯泡 发出的两束光线 OB、OC 经 灯碗反射以后平行射出如果图中 , ,则BOC 的度数为( )OA B C D180 1()290()(5) 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西( )度A48 B42 C52 D58(6) 如图 6,若 ABCD,则图中相等的内错角是( )A1 与5,2 与6 B3 与7,4 与8C2 与6,3 与7 D1 与5,4 与8(7) 下列命题真命题是( )A互补的两个角不相等 B相等的两个角是对顶角C有公共顶点的两个角是对顶角 D同角或等角的补角相等(8) 下列命题中属于定义的是( )A两点确定一条直线B两直线平行,内错角相等C点到直线的距离是该点到这条直线的垂线段的长度D同角或等角的余角相等答案:(1) B;(2) A (3) B (4) B (5) A (6) C (7) D (8) C例 8如图,ABCD,且 EF 分别交 AB、CD 于 M、N,EMB=50, MG 平分BMF,MG 交 CD于 G求1 的度数解: EMB=50, BMF=130又 MG 平分BMF, 1652BMGF而 ABCD, 1=BMG=65