收藏 分享(赏)

1. 11 函数的图像 教案(华东师大版八年级下).doc

上传人:HR专家 文档编号:5449713 上传时间:2019-03-03 格式:DOC 页数:10 大小:210KB
下载 相关 举报
1. 11 函数的图像   教案(华东师大版八年级下).doc_第1页
第1页 / 共10页
1. 11 函数的图像   教案(华东师大版八年级下).doc_第2页
第2页 / 共10页
1. 11 函数的图像   教案(华东师大版八年级下).doc_第3页
第3页 / 共10页
1. 11 函数的图像   教案(华东师大版八年级下).doc_第4页
第4页 / 共10页
1. 11 函数的图像   教案(华东师大版八年级下).doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、教学目标(一)教学知识点学会用列表、描点、连线画函数图象学会观察、分析函数图象信息(二)能力训练要求提高识图能力、分析函数图象信息能力体会数形结合思想,并利用它解决问题,提高解决问题能力(三)情感与价值观要求体会数学方法的多样性,提高学习兴趣认识数学在解决问题中的重要作用从而加深对数学的认识教学重点函数图象的画法观察分析图象信息教学难点分析概括图象中的信息教学方法自主探究、归纳总结教具准备多媒体演示教学过程提出问题,创设情境我们在前面学习了函数意义,并掌握了函数关系式的确立但有些函数问题很难用函数关系式表示出来,然而可以通过图来直观反映例如用心电图表示心脏生物电流与时间的关系即使对于能列式表示

2、的函数关系,如果也能画图表示则会使函数关系更清晰我们这节课就来解决如何画函数图象的问题及解读函数图象信息导入新课我们先来看这样一个问题:正方形的边长 x 与面积的函数关系是什么?其中自变量 x 的取值范围是什么?计算并填写下表:x 0 5 1 1 5 2 2 5 3 3 5S生 函数关系式为 S=x2,因为 x 代表正方形的边长,所以自变量 x0,将每个 x 的值代入函数式即可求出对应的值师 好!如果我们在直角坐标系中,将你所填表格中的自变量 x 及对应的函数值 S 当作一个点的横坐标与纵坐标,即可在坐标系中得到一些点大家思考一下,表示 x 与的对应关系的点有多少个? 如果全在坐标中指出的话是

3、什么样子?可以讨论一下,然后发表你们的看法,建议大家不妨动手画画看生 这样的点有无数多个,如果全描出来太麻烦,也不可能我们只能描出其中一部分,然后想象出其他点的位置,用光滑曲线连接起来师 很好!这样我们就得到了一幅表示与 x 关系的图图中每个点都代表 x 的值与的值的一种对应关系如点(2,4 )表示 x2 时4 一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象(graph ) 上图中的曲线即为函数x 2(x0)的图象函数图象可以数形结合地研究函数,给我们带来便利活动一活动内容设计:下图是自动测温仪记录的图象, 它反

4、映了北京的春季某天气温如何随时间 t 的变化而变化你从图象中得到了哪些信息?如有条件,你可以用带有温度探头的计算机(器) ,测试、记录温度和绘制表示温度变化的图象活动设计意图:通过图象进一步认识函数意义体会图象的直观性、优越性提高对图象的分析能力、认识水平掌握函数变化规律教师活动:引导学生从两个变量的对应关系上认识函数,体会函数意义;可以指导学生找出一天内最高、最低气温及时间;在某些时间段的变化趋势;认识图象的直观性及优缺点;总结变化规律学生活动:在教师引导下,积极探寻,合作探究,归纳总结活动结论:一天中每时刻 t 都有唯一的气温与之对应可以认为,气温是时间 t 的函数这天中凌晨 4 时气温最

5、低为 -3,14 时气温最高为 8从 0 时至 4 时气温呈下降状态,即温度随时间的增加而下降从 4 时至 14时气温呈上升状态,从 14 时至 24 时气温又呈下降状态我们可以从图象中直观看出一天中气温变化情况及任一时刻的气温大约是多少如果长期观察这样的气温图象,我们就能得到更多信息,掌握更多气温变化规律活动二活动内容设计:下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家 其中 x 表示时间,y 表示小明离他家的距离根据图象回答下列问题:菜地离小明家多远?小明走到菜地用了多少时间?小明给菜地浇水用了多少时间?菜地离玉米地多远?小明从菜地到玉米地用了多少时间?小明给玉米地锄草用了多

6、长时间?玉米地离小明家多远?小明从玉米地走回家平均速度是多少?设计意图:进一步提高识图能力按要求从图象中挖掘所需信息,并自理信息教师活动:引导学生分析图象、寻找图象信息,特别是图象中有两段平行于 x轴的线段的意义学生活动:在教师引导下,积极思考、大胆参与、探求答案活动结论:由纵坐标看出,菜地离小明家 11 千米;由横坐标看出, 小明走到菜地用了 15分钟由平行线段的横坐标可看出,小明给菜地浇水用了 10 分钟由纵坐标看出,菜地离玉米地 09 千米由横坐标看出, 小明从菜地到玉米地用了 12 分钟由平行线段的横坐标可看出,小明给玉米地锄草用了 18 分钟由纵坐标看出,玉米地离小明家 2 千米由横

7、坐标看出, 小明从玉米地走回家用了 25 分钟所以平均速度为:225=0 08(千米分钟) 师 我们通过两个活动已学会了如何观察分析图象信息,那么已知函数关系式,怎样画出函数图象呢?例:在下列式子中,对于 x 的每个确定的值,y 有唯一的对应值,即 y 是 x 的函数请画出这些函数的图象y=x+05 y= (x0)6x解:y=x+05从上式可看出,x 取任意实数式子都有意义,所以 x 的取值范围是全体实数从 x 的取值范围中选取一些数值,算出 y 的对应值列表如下:x -3 -2 -1 0 1 2 3 y -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 根据表中数值描点(x,y

8、) ,并用光滑曲线连结这些点从函数图象可以看出,直线从左向右上升,即当 x 由小变大时,y=x+05 随之增大y= ( x0)6x自变量的取值为 x0 的实数,即正实数按条件选取自变量值,并计算 y 值列表:x 0 5 1 1 5 2 2 5 3 3 5 4 y 12 6 4 3 2.4 2 1.7 1 5 据表中数值描点(x,y )并用光滑曲线连结这些点,就得到图象从函数图象可以看出,曲线从左向右下降,即当 x 由小变大时,y 随之减小6x师 我们来总结归纳一下描点法画函数图象的一般步骤,好吗?生 由以上例题可以知道:第一步:列表在自变量取值范围内选定一些值通过函数关系式求出对应函数值列成表

9、格第二步:描点在直角坐标系中,以自变量的值为横坐标,相应函数值为纵坐标,描出表中对应各点第三步:连线按照坐标由小到大的顺序把所有点用平滑曲线连结起来尝试练习:(1 )下图是一种古代计时器“漏壶”的示意图,在壶内盛一定量的水, 水从壶下的小孔漏出,壶壁内画出刻度人们根据壶中水面的位置计算时间用 x表示时间,y表示壶底到水面的高度下面的哪个图象适合表示 y 与 x 的函数关系?(2)a 是自变量 x 取值范围内的任意一个值,过点(a,0 )画 y 轴的平行线, 与图中曲线相交下列哪个图中的曲线表示 y 是 x 的函数?为什么?(提示:当 x=a 时,x 的函数 y 只能有一个函数值)解:由题意可知

10、,开始时壶内有一定量水,最终漏完,即开始时间 x=0时,壶底水面高 y0 最终漏完即时间 x 到某一值时 y=0故(1)图错又因为壶内水面高低影响水的流速,开始漏得快,逐渐慢下来所以(3)图更适合表示这个函数关系图(1)曲线表示 y 是 x 的函数因为过(a,0)画 y 轴平行线与图形曲线只有一个交点,即 x=a 时,y 有唯一的值与其对应,符合函数意义图(2)曲线不表示 y 是 x 的函数因为过点(a,0)画 y 轴平行线,与图中曲线有三个交点,即 x=a 时,y 有三个值与其对应,不符合函数意义随堂练习1.A(-25,-4) ,B(1,3)不在函数 y=2x-1 的图象上,C(25 ,4)在函数 y=2x-1的图象上 (1)这一天内,12 时上海北京气温相同(2)略 (1)x -2 -1 0 1 2 y 4 1 0 1 4 (2 )从图象中观察,当 x0 时,y 随 x 的增大而增大当 x0 时,y 随 x的增大而减小课时小结本节通过两个活动,学会了分析图象信息,解答有关问题通过例题学会了用描点法画出函数图象,这样我们又一次利用了数形结合的思想课后作业板书设计函数图象一、数形结合二、图象信息三、描点法画图四、课堂练习

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报