1、课题:几类不同增长的函数模型课 型:新授课教学目标:结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.教学重点、难点:1. 教学重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.2教学难点 选择合适的数学模型分析解决实际问题.学法与教学用具:1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.2教学用具:多媒体.教学过程:(一)引入实例,创设情景.教师引导学生阅读例 1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;
2、由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.(二)互动交流,探求新知.1. 观察数据,体会模型.教师引导学生观察例 1 表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.2. 作出图象,描述特点.教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据.(三)实例运用,巩固提高.1. 教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益. 学生通过自主活动,分析整理数据,并根据其中的
3、信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流.2. 教师引导学生分析例 2 中三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况,进一步体会三种基本函数模型在实际中广泛应用,体会它们的增长差异.3教师引导学生分析得出:要对每一个奖励模型的奖金总额是否超出 5 万元,以及奖励比例是否超过 25%进行分析,才能做出正确选择,学会对数据的特点与作用进行分析、判断。4教师引导学生利用解析式,结合图象,对例 2 的三个模型的增长情况进行分析比较,写出完整的解答过程. 进一步认识三个函数模型的增长差异,并掌握解答的规范要求.5教师引导学生通过以
4、上具体函数进行比较分析,探究幂函数 ( 0) 、指数nyx函数 ( 1) 、对数函数 ( 1)在区间(0,+ )上的增长差异,并nyalogayx从函数的性质上进行研究、论证,同学之间进行交流总结,形成结论性报告. 教师对学生的结论进行评析,借助信息技术手段进行验证演示.6. 课堂练习教材 P98 练习 1、2 ,并由学生演示,进行讲评。(四)归纳总结,提升认识.教师通过计算机作图进行总结,使学生认识直线上升、指数爆炸、对数增长等不同函数模型的含义及其差异,认识数学与现实生活、与其他学科的密切联系,从而体会数学的实用价值和内在变化规律.(五)布置作业教材 P107 练习第 2 题收集一些社会生活中普遍使用的递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用,并思考。有时同一个实际问题可以建立多个函数模型,在具体应用函数模型时,应该怎样选用合理的函数模型.课后记:高考试题库w。w-w*高考试题库高考试题库w。w-w*高考试题库