收藏 分享(赏)

数学建模 猎狗追兔子问题.doc

上传人:fcgy86390 文档编号:5310951 上传时间:2019-02-20 格式:DOC 页数:11 大小:134.27KB
下载 相关 举报
数学建模 猎狗追兔子问题.doc_第1页
第1页 / 共11页
数学建模 猎狗追兔子问题.doc_第2页
第2页 / 共11页
数学建模 猎狗追兔子问题.doc_第3页
第3页 / 共11页
数学建模 猎狗追兔子问题.doc_第4页
第4页 / 共11页
数学建模 猎狗追兔子问题.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、 数学建模论文数学建模 (公选课,2014 春)课程论文0数学建模(2014 春)课程期末论文题 目 猎狗追兔子问题 题 号 A 成 员 姓 名 学 号 班 级 学 院 联系电话学生 1学生 2摘要(一) 对于问题一:自然科学中存在许多变量,也有许多常量,而我们要善于通过建立合适的模型找到这些变量之中的不变量。猎狗追赶兔子的问题是我们在生活中常见的实例,而题目把我们生活中的普通的例子抽象成为高等数学中微分方程的例子,通过对高阶微分方程的分析,建立微分方程模型,并用数学软件编写程序求解,得出结论,解决生活中常见的实际问题。(2) 对于问题二:学习使用 matlab 进行数学模型的求解,掌握常用计

2、算机软件的使用方法。关键词微分方程 导数的几何意义 猎狗追兔子 数学建模 数学软件数学建模 (公选课,2014 春)课程论文1一、问题重述如图 1 所示,有一只猎狗在 B 点位置,发现了一只兔子在正东北方距离它 250m 的地方 O 处,此时兔子开始以 8m/s 的速度正向正西北方向,距离为 150m 的洞口 A 全速跑去. 假设猎狗在追赶兔子的时候,始终朝着兔子的方向全速奔跑。请回答下面的问题: 猎狗能追上兔子的最小速度是多少? 在猎狗能追上兔子的情况下,猎狗跑过的路程是少? 假设猎狗在追赶过程中,当猎狗与兔子之间的 距离为30m时,兔子由于害怕导致奔跑速度每秒减半,而狗却由于兴奋奔跑速度每

3、秒增加 0.1 倍,在这种情况下回答前面两个问题。二、问题分析与假设在猎狗追赶兔子的时候猎狗一直朝着兔子的方向追赶,所以可以建立平面直角坐标系,通过导数联立起猎狗运动位移,速度和兔子的运动状态。1.假设兔子的运动是匀速的。2.假设猎狗的运动轨迹是一条光滑并且一阶导数存在的曲线。3.猎狗的运动时匀速或者匀变速的。4.猎狗运动时总是朝向兔子。三、模型的建立及求解3.1 符号规定1.(x,y):猎狗或者兔子所在位置的坐标。2. t:从开始到问题结束经过的时间。3. a:猎狗奔跑的路程。4. v:猎狗的奔跑速度。3.2 模型一的建立与求解猎狗能够抓到兔子的必要条件:猎狗的运动轨迹在OA要有交点以OA为

4、y轴,以OB为x轴建立坐标系,则由图有O(0,0),A(0,150),B(250,0),兔子的初始位置0点,而猎狗初始位置是B点,t(s)后猎狗到达了C(x,y) ,而兔子到达了D(0,8t) ,则有CD的连线是猎狗运动轨迹的一条切线,由导数的几何意义有:BANOWSEBANOWSE数学建模 (公选课,2014 春)课程论文28dytxxdavt22daxdy三式联立消去t,得到;2 281()dydyxvx设:8qv若猎狗可以追上兔子则有当兔子在OA,猎狗在OB之间运动时此方程有解,设:dypx2dydpxx得到: 21ddqxp(250)p得到:21()50qp2()qx数学建模 (公选课

5、,2014 春)课程论文3两式联立相加得到: 1250()()2qqdyxxx(50)y1.如果 q=1 即 v=8 m/s 得到2150ln()250xxy0,所以此情况无交点,所以 v=8m/s 猎狗无法追上兔子;2.如果 q8m/s 得到 122511250()()250qqxyqx0,1x此情况有交点,所以有可能能够追上兔子,如果要追上兔子需要 y1 利用上式得到 0,xy,所以这种情况不能追上兔子。综上讨论,猎狗可以追上兔子的最小速度为485。3.3 模型二的建立与求解如果猎狗可以追上兔子那么猎狗的轨迹和兔子的轨迹必相交与一点,此时兔子的路程 251qy,所用放的时间258(1)yq

6、t,那么猎狗的的路程a=tv;带入数值解得a=90615。3.4 模型三的建立与求解数学建模 (公选课,2014 春)课程论文4模型三利用matlab试验,得到代码如下:a=8;dogxa=;dogya=;rabbitxa=;rabbitya=;d=1;dogx=250;dogy=0;rabbitx=0;rabbity=0;t=0;dt=0.001;for b=0:100dogx=250;dogy=0;rabbitx=0;rabbity=0;t=0;c=b;a=8;while(sqrt(dogx-rabbitx)2+(dogy-rabbity)2)dif(sqrt(dogx-rabbitx)2

7、+(dogy-rabbity)2)ddx=dx-v*dt*dx/sqrt(dx2+(a*t-dy)2);dy=dy+v*dt*(a*t-dy)/sqrt(dx2+(a*t-dy)2);ry=a*t;plot(dx,dy,rx,ry,y*)end五、模型的评价数学建模 (公选课,2014 春)课程论文85.1 模型的优缺点模型的优点。(1)模型的使用范围比较广泛,可以类推到其他许多模型中。(2)模型具有很高的使用价值。(3)模型对题目中的问题解决合适,模型使用得当。这里写模型的缺点。(4)题目中增加了一些理想化的假设,致使模型的波动比较大。(5)不同兔子和猎狗的情况会有差异。5.2 模型的改进可使用仿生学原理,建立我们更加准确的模型。六、参考文献1 赵书来,MATLAB 编程与最优化问题,北京:电子工业出版社,2013。2 邬学军,周凯,宋军全,数学建模竞赛辅导教程,杭州,浙江大学出版社,2009。3 李志林,欧宜贵,数学建模及其典型案例分析,北京,化学工业出版社,2006.4 Matlab 入门教程,http:/ 1:Matlab 的截图数学建模 (公选课,2014 春)课程论文9

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 职业教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报