1、三角形的重心:含义:是三角形三条中线的交点。性质:1.重心到顶点的距离与重心到对边中点的距离之比为 2:1 2.重心和三角形 3 个顶点组成的 3 个三角形面积相等。 3.重心到三角形 3 个顶点距离的平方和最小。 4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为(X1+X2+X3)/3,(Y1+Y2+Y3)/3)在空间直角坐标系中,横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3 5.重心和三角形 3 个顶点的连线的任意一条连线将三角形面积平分。 6.重心是三角形内到三边距离之积最大的点三角形的外心:含义:是三角形三条垂直
2、平分线的交点(或三角形外接圆的圆心) 。性质:1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心. 2 三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。 3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合 4.OA=OB=OC=R 5.BOC=2BAC,AOB=2ACB,COA=2CBA 6.SABC=abc/4R三角形的内心:含义:是三角形三条角平分线的交点(或内切圆的圆心)。性质:1.三角形的三条角平分线交于一点,该点即为三角形的内心 2.三角形的内心到三边的距离
3、相等,都等于内切圆半径 r 3.r=2S/(a+b+c) 4.在 RtABC 中,C=90,r=(a+b-c)/2 5.BOC = 90 +A/2 BOA = 90 +C/2 AOC = 90 +B/2 6.S=(a+b+c)r/2 (r 是内切圆半径)三角形的垂心:含义:是三角形三边上的高的交点(通常用 H 表示)。性质:1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外 2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心 3. 垂心 O 关于三边的对称点,均在ABC 的外接圆上 4.ABC 中,有六组四点共圆,有三组 (每组
4、四个)相似的直角三角形,且 AOOD=BOOE=COOF 5. H、A、B、C 四点中任一点是其余三点为顶点的三角形的垂心( 并称这样的四点为一垂心组)。 6.ABC,ABO,BCO ,ACO 的外接圆是等圆。 7.在非直角三角形中,过 O 的直线交 AB、AC 所在直线分别于 P、Q ,则 AB/APtanB+ AC/AQtanC=tanA+tanB+tanC 8.三角形任一顶点到垂心的距离,等于外心到对边的距离的 2 倍。 9.设 O,H 分别为ABC 的外心和垂心,则 BAO=HAC, ABH=OBC,BCO= HCA。 10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的 2 倍。 10.锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上) 中,以垂足三角形的周长最短。:在正三角形中,中心、重心、垂心、内心、外心重合