收藏 分享(赏)

【金版优课】高中数学人教b版选修1-1课时作业:2.1.4 椭圆的几何性质(2) word版含解析.doc

上传人:无敌 文档编号:522951 上传时间:2018-04-09 格式:DOC 页数:4 大小:86.50KB
下载 相关 举报
【金版优课】高中数学人教b版选修1-1课时作业:2.1.4 椭圆的几何性质(2) word版含解析.doc_第1页
第1页 / 共4页
【金版优课】高中数学人教b版选修1-1课时作业:2.1.4 椭圆的几何性质(2) word版含解析.doc_第2页
第2页 / 共4页
【金版优课】高中数学人教b版选修1-1课时作业:2.1.4 椭圆的几何性质(2) word版含解析.doc_第3页
第3页 / 共4页
【金版优课】高中数学人教b版选修1-1课时作业:2.1.4 椭圆的几何性质(2) word版含解析.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、选修 1-1 第二章 2.1 课时作业 13一、选择题1. 已知焦点在 x 轴上的椭圆的离心率为 ,且它的长轴长等于圆12C:x 2 y22x150 的半径,则椭圆的标准方程是( )A 1 B 1x24 y23 x216 y212C y 21 D 1x24 x216 y24解析:由 x2y 22x 150 ,知 r42aa2.又 e ,c 1.故ca 12b2a 2c 24 13.故选 A.答案:A 2. 已知椭圆 1(m0),若直线 y x 与椭圆的一个交点 M 在 x 轴上的射影恰x216 y2m2 22好是椭圆的右焦点 F,则 m 等于 ( )A 2 B 2 2C 2 D 22解析:由题

2、意设半焦距为 c,易知点 M(c, c),点 M 又在椭圆上, 1 22 c216 c22m2.又 c216 m2 ,由联立解得 m28,m2 .2答案:A 3. 把离心率等于黄金比 的椭圆称为优美椭圆,设椭圆 1( ab0)为优美5 12 x2a2 y2b2椭圆,已知 F,A 分别是它的左焦点和右顶点,B 是短轴的一个端点,则ABF 等于( )A 30 B 45C 60 D 90解析:设椭圆的半焦距为 c,e 是方程 x2x10 的一个根,5 12e 2e10,即( )2 10,c 2aca 20.不妨设 B 为上顶点,则 F(c, 0),A(a,0) ,ca caB(0,b), b 2ac

3、 a2c 2ac0,FBAB,即 ABF90.FB AB 答案:D 4. 若点 O 和点 F 分别为椭圆 1 的中心和左焦点,点 P 为椭圆上的任意一点,x24 y23则 的最大值为( )OP FP A 2 B 3C 6 D 8解析:由椭圆 1 可得点 F(1,0),点 O(0,0),设 P(x,y),2x 2,x24 y23则 x 2 xy 2x 2x 3(1 )OP FP x24 x2x3 (x2) 22,14 14当且仅当 x2 时, 取得最大值 6.OP FP 答案:C 二、填空题5. 已知点 A,B 是椭圆 1( m0,n0)上的两点,且 ,则 _.x2m2 y2n2 AO BO 解

4、析:由 知点 A,O,B 共线,因椭圆关于原点对称,AO BO 1.答案:16. 焦点在 x 轴上,长轴长为 20,短轴长为 16 的椭圆的内接矩形中面积最大的矩形周长为_解析:由题意 a10,b8,设内接矩形 ABCD 位于第一象限的顶点为 A(x0,y 0),则有 1,且 S 矩形 ABCD4x 0y0.x20100 y2064由于 x y x (1 )64 x (100x ) 21600,当且仅当2020 20x20100 162520 20 1625(x20 100 x202 )x 100x ,即 x 50 时“ ”成立此时 y 32,即当 x05 ,y 04 时,椭圆的20 20 2

5、0 20 2 2内接矩形面积最大,这时内接矩形周长为:4(x 0y 0)36 .2答案:36 27. 横跨北京动物园上空的“隔音隧道”为半椭圆形隔音钢架结构,隧道内为双向四车道,车道总宽 20 米,限制通行车辆的高度不超过 4 米,隧道正中是一面 7 米高的隔板,两侧各有两个车道,根据以上信息,请你计算出隧道设计的拱宽(椭圆长轴) 至少_米( 5.7,结果精确到分米)33解析:由题意,椭圆短半轴长 b7,设椭圆方程为 1(a7),易知点(10,4) 在椭x2a2 y249圆上, 1,则 a2 ,a ,2a 24.6.100a2 1649 490033 7033 14033答案:24.6三、解答

6、题8. 如图,已知 A(4,0),B(2,2)是椭圆 1 内的两个点, M 是椭圆上的动点,求x225 y29|MA| MB|的最大值和最小值解:由 1 得 a5,b3,c4,点 A(4,0)为椭圆的一个焦点,另一个焦点x225 y29F( 4,0),|MA |MF|2a10,|MA |MB|10| MF|MB| ,在BMF 中,两边之差的绝对值小于第三边,且|BF| 2 ,102 |FB| MB|MF|FB |2 ,10 10102 |MA| MB|102 ,最小值为 102 ,最大值为 102 .10 10 10 109. 已知 F1, F2 是椭圆的两个焦点,P 为椭圆上一点,F 1PF

7、260.(1)求椭圆离心率的取值范围;(2)求证:F 1PF2 的面积只与椭圆短轴长有关解:(1)不妨设椭圆方程为 1( ab0),由余弦定理得x2a2 y2b2cos60|PF1|2 |PF2|2 |F1F2|22|PF1|PF2| ,|PF1| |PF2|2 2|PF1|PF2| |F1F2|22|PF1|PF2|PF 1|PF2| 4a22| PF1|PF2|4c 2,3| PF1|PF2| 4b2,|PF 1|PF2| b2,43又|PF 1|PF2|( )2a 2,|PF1| |PF2|23a 24(a 2c 2), ,ca 12e .12又椭圆中 0e1, e1.12(2)证明:由(1)知|PF 1|PF2| b2,43SF 1PF2 |PF1|PF2|sin6012 b2 b2,12 43 32 33F 1PF2 的面积只与椭圆的短轴长有关

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报