分享
分享赚钱 收藏 举报 版权申诉 / 3

类型数学:沪科版九年级下:266《三角形的内切圆》(教案).doc

  • 上传人:HR专家
  • 文档编号:5220334
  • 上传时间:2019-02-12
  • 格式:DOC
  • 页数:3
  • 大小:22.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学:沪科版九年级下:266《三角形的内切圆》(教案).doc
    资源描述:

    1、 26.6.三角形的内切圆一、教学目的1.使学生理解并掌握三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形的内心概念,掌握三角形内切圆的作法。2.使学生学会利用三角形内心的性质解题。二、教学重点、难点重点:三角形内切圆的作法、三角形的内心与性质。难点:三角形与圆的位置关系中的“内”与“外” 、 “接”与“切”四个概念的理解和运用。三、教学过程复习提问1.确定圆的条件是什么?2.叙述角平分线的定义、性质和判定方法。引入新课联系实际激发学生学习兴趣。从一块三角形的材料上裁下一块圆形用料,怎样才能使圆的面积尽可能大呢?这是具有实用价值和理论意义的问题。现在来研究这个问题的解法。来源:x

    2、yzkw.Com新课1.三角形内切圆的作法解决这个问题,实际就是在三角形内部作一个圆使其三边都与它相切。例 1 作圆,使它和已知三角形的各边都相切。引导学生结合右图,写出已知、求作,然后师生共同分析寻找作法。要抓住作圆的要点,出圆心和半径。设问如下: (1) 作圆的关键是什么?(找圆心)(2) 假设所作I 和三角形三边都相切,那么圆心 I 应当满足什么条件?(I 到三边距离相等)(3) 这样的点 I 应在什么位置?(既在B 平分线上,又在C 平分线上,那就是两条角平分线的交点) 。(4) 圆心 I 在确定后半径如何找?(I 到任一边如 BC 的距离 ID 就可作为圆的半径)让学生找出作法思路后

    3、,教师归纳并简要板书作法,并用直尺圆规重新画出准确图形。成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个。2.三角形的内切圆、三角形的内心、多边形的内切圆、圆的外切多边形的概念。讲解这些概念时,采用观察(图形) 、类比的方法。介绍三角形的内切圆及圆的的外切三角形概念时,要和三角形的外接圆与圆的内接三角形概念相比较,使学生明确“接”和“切”是说明多边形的顶点和边与圆相切的关系:多边形的顶点都在圆上的叫“接” ;多边形的边都与圆相节的叫“切”的含义。还使学生弄清“内心”与“外心”的区别。3.三角形内心的应用由于内心是三个内角平分线的交点,所以如果三角形内心已知

    4、时, “过三角形顶点和内心的射线平分三角形的内角” ,这实际上就是内心的性质;还有“三角形内心到三边距离相等” ;“由内心可作三角形的内切圆”等,这都要求学生记住。由此引出一条重要的辅助线:连结内心和三角形的顶点,该线平分三角形的这一内角。例 2 (教材)就是直接利用这个性质来解的题目。来源:学优中考网来源:学优中考网补充例题 ABC 中,E 是内心,A 的平分线和ABC 的外接圆相交于点 D,求证:DE=DB=DC。小结来源:学优中考网1.回顾三角形的内切、三角形的内心、圆外切三角形的定义。2三角形内心性质及其应用。练习:作业:思考题: 一、 教学注意问题来源:学优中考网1 区别“内”与“外” , “接”与“切” 。2 充分注意“连结内心和三角形顶点”这一辅助线的添加和应用。学优中考,网

    提示  道客多多所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学:沪科版九年级下:266《三角形的内切圆》(教案).doc
    链接地址:https://www.docduoduo.com/p-5220334.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    道客多多用户QQ群:832276834  微博官方号:道客多多官方   知乎号:道客多多

    Copyright© 2025 道客多多 docduoduo.com 网站版权所有世界地图

    经营许可证编号:粤ICP备2021046453号    营业执照商标

    1.png 2.png 3.png 4.png 5.png 6.png 7.png 8.png 9.png 10.png



    收起
    展开