压缩包目录
-
全部
- 数学答案(理科).pdf--点击预览
- 河南省中原名校(即豫南九校)2018届高三第六次质量考评理科数学试卷(图片版,有答案).doc--点击预览
文件预览区
|
|
资源描述
g20750g1087g10812g12295g7078g4508g12682g7806 g126421g20139g948g195911g20139g949 中原名校2017—2018学年高三第六次质量考评 高三理数答案 1 2 3 4 5 6 7 8 9 10 11 12 C A B A C B C D C B D A 1g714C g463g16403g7616g464g3344g1130g19702g2616 { | 1}A x x= g7206g3374g17041g2591g14125g1130Ag727g5507 0a = g7206g3374g17041g1130Dg727g5507 0a g712g11787g11566g712g7029g17977Cg714 10g714B g463g16403g7616g464g11105g20168g5951g2591g11797 ABC△ g1086 BCD△ g18221g7263g17897g19375g11302g11444g8595g1081g16386g5522g712g4018g3374g712g17911 ABC△g1086 BCD△ g11444g1117g5619M g712N g2102g2139g1420g6256g3416g5283g19858g11444g3506g13551g712g1108g3506g13551g11444g1236g9961g4705g7263g10803g5619Og712 g20750g1087g10812g12295g7078g4508g12682g7806 g126423g20139g948g195911g20139g949 g3416Rt OME△ g1117g712 60MEO∠ = °g712 33ME = g712g6256g1301 2 32 3OE ME= = g712g6256g1301g10803Og11444g2426g5556 2 2 2 22 3( ) 13R OB OE BE == = + + =213 g712g6256g1301g10803 O g11444g16024g19858g123192 284π π3S R= = g712g7029g17977Bg714 11g714D g463g16403g7616g464g11105g20168g2591g5575g11556g13551 AB g11444g7145g12347g1130 1x y= + g712g1086 2 4y x= g13956g12539g9144g2539xg712g2591g55752 4 4 0y y− − = g712g168781 1( , )A x y g712 2 2( , )B x y g712g2121 1 2 4y y+ = g712 1 2 4y y =− g712g16878( , )E EE x y g712g2121 1 2 22E y yy += = g712 1 3E Ex y= + = g712 1 2 1| | 2 1AB x x y= + + = + + 2 1 2 8y + + = g712g6256g1301g3382Eg7263g1301(3,2)g1130g3382g5619g7124g1130g2426g5556g11444g3382g712g6256g1301g9961Dg5762g3416g3382Eg3910g712g3382Eg1082g4488g3416g9961Pg712Qg712g1455g5575g1301PQg1130g11556g5556g11444g3382g17911g9961 ( 2, )D t− g712g2467g3382Eg1082g4488g3416g9961Pg712Qg712g1455g5575 DP DQ⊥ g714g7278g10086g5507 DP g712 DQ g1086g3382 E g11560g2103g7206 PDQ∠ g7472g3927g712g8596g7206g5316g9489g17379π2PDQ∠ ≥ g712g6256g1301 2 2| | 4 2| | 2(3 2) +(2 )EPDE t= ≥+ − g712g7076g10806g55752 4 3 0t t− − ≤ g712g16403g55752 7 2 7t− ≤ ≤ + g712g7029g4558g7072tg11444g2566g1644g14643g3364g1130[2 7,2 7]− + g712g7029g17977Dg714 12g714A g463g16403g7616g464g11105 ( ) ln 1( 0)xf x aax = − − g5575 1 1( ) 1 ( 0)xf ' xxx x−= − = g712g6256g1301g2093g7072 ( )f xg3416(0,1)g1082g2437g16947g17986g3790g712g3416(1, )+∞ g1082g2437g16947g17986g2047g712g1092 ( n1) l 2f a=− − g712g7029g2093g7072 ( )f x g11444g1644g3599g1130 ( , ln 2]a−∞ − − g714 g3344 g1130 g5507 (0,1]x∈ g7206 ( ) ( , ln 2]f ax ∈ −∞ − − g712 g6256 g1301 g5507ln 2 1a− − ≥ g712g2467 310 eag712g16403g55753 5t g712g6256g1301g2591g1301g3416g10463g19273g16927g11444g8114g10679g1085g17333g179110.025g11444g2173g6656g1083g16852g1130g4649g16917g11438g17239g19750g2910g1329g1098g11444g13551g1083g19248g2910g20173g6449g13597g3790g19375g6256g6449g11444g5681g5334g1086g5719g2139g7481g1955g714g70812g2102g709 19g714g708g7516g4671g20168g9489g210212g2102g709 g463g16403g7616g464g7081g709g3344g1130g3339g17897g5522ABCDg7263g5283g15996g3339g17897g5522g712 2 2AD = g712g6256g1301 2 2BC AD= = g712 g2552 2AB AC= = g712g6256g1301 2 2 2AB AC BC+ = g712g6256g1301AC AB⊥ g712g7082g2102g709 g2552PB AC⊥ g712g1092AB PB B=∩ g712g6256g1301AC ⊥g5283g19858PABg712g7084g2102g709 g3344g1130AC ⊂g5283g19858PACg712g6256g1301g5283g19858PAB ⊥g5283g19858PACg714g7085g2102g709 g7082g709g11105g7081g709g11797AC AB⊥ g712AC ⊥g5283g19858PABg712 g4018g3374g712g2102g2139g1301ABg712ACg6256g3416g11556g13551g1130xg17828g451yg17828g712g5283g19858PABg1973g17911g9961Ag1092g1086g11556g13551ABg3506g11556g11444g11556g13551g1130zg17828g712g5418g12539g12458g19492g11556g16386g3456g7735g13099A xyz− g712g7087g2102g709 g20750g1087g10812g12295g7078g4508g12682g7806 g126427g20139g948g195911g20139g949 g2121 (0,0,0)A g712 (2,0,0)B g712 (0,2,0)C g712 (0,2,0)AC =g712 ( 2,2,0)BC = −g712 g11105 45PBA∠ = °g712 3 2PB = g712g2591g5575 ( 1,0,3)P − g712 g6256g1301 ( 1,0,3)AP = −g712 ( 3,0,3)BP = −g712g7088g2102g709 g1655g16878g7969PAg1082g4488g3416g9961Eg712g1455g5575g11556g13551CEg1086g5283g19858PBCg6256g6208g16386g11444g8595g5462g1644g1130 33 g712 g16878 (0 1)AEAP λ λ= g712g7029 23 4 0λ λ+ = g7184g16403g712 g6256g1301g7969PAg1082g1085g4488g3416g1086g9961Pg712Ag1085g18429g2616g11444g9961Eg712g1455g5575g11556g13551CEg1086g5283g19858PBCg6256g6208g16386g11444g8595g20750g1087g10812g12295g7078g4508g12682g7806 g126428g20139g948g195911g20139g949 g5462g1644g1130 33 g714g70812g2102g709 20g714g708g7516g4671g20168g9489g210212g2102g709 g463g16403g7616g464g7081g709g3344g1130g8029g3382Cg11444g12267g5619g10679 22e = g712 g6256g13012 2 22a ba− = g712g2467 2 22a b= g712g7082g2102g709 g3344g1130g8029g3382Cg1086g3382Og114444g1114g1236g9961g5792g1130g1072g1114g8595g7145g5522g114444g1114g20134g9961g712 g6256g1301g11556g13551y x= g1086g3382Og11444g1072g1114g1236g9961 6 6( , )3 3 g3416g8029g3382Cg1082g712g6256g1301 2 22 2 13 3a b+ = g712g7083g2102g709 g111052 22 222 2 13 3a ba b = + =g16403g55752221ab = =g712g6256g1301g8029g3382Cg11444g7735g2038g7145g12347g113022 12x y+ = g714g7085g2102g709 g7082g709g11105g7081g709g11797 (0, 1)A − g712 g5507g11556g13551DEg11444g7116g10679g4488g3416g7206g712g16878g11556g13551DEg11444g7145g12347g1130 ( 1)y kx t t= + ≠± g712 g1299g194122 12x y+ = g5575g712 2 2 2(1 2 ) 4 2 2 0k x ktx t+ + + − = g712 g6256g1301 2 2 2 216 4(1 2 )(2 2) 0k t k t∆= − + − g712g2467 2 22 1t k− g7206 ( ) 0g x′ g712 ( )f ' x g3416(0, )+∞ g1082g2437g16947g17986g3790g712 g5507 0x− g712g6256g13011 0a+ g712g2467 ( ) 0f ' x g712 g6256g1301g2093g7072 ( )f x g3416Rg1082g2437g16947g17986g3790g714g7085g2102g709 g7082g709g11105g7081g709g11797 ( )f ' x g3416[1, )+∞ g1082g2437g16947g17986g3790g712 g3344g1130 1 ea g712g2121 ( ) (1 e ) 0xh' x x= − g1092 13 2a g712 g2467 31 2a g712g7029g4558g7072ag11444g2566g1644g14643g3364g7263 3(1, )2 g714g70810g2102g709
展开阅读全文
相关搜索