收藏 分享(赏)

《直线、平面垂直的判定及其性质》教案2 第1课时(新人教a版必修2).doc

上传人:无敌 文档编号:519514 上传时间:2018-04-09 格式:DOC 页数:3 大小:60KB
下载 相关 举报
《直线、平面垂直的判定及其性质》教案2 第1课时(新人教a版必修2).doc_第1页
第1页 / 共3页
《直线、平面垂直的判定及其性质》教案2 第1课时(新人教a版必修2).doc_第2页
第2页 / 共3页
《直线、平面垂直的判定及其性质》教案2 第1课时(新人教a版必修2).doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2.3.1 直线与平面垂直的判定一、教学目标1、知识与技能(1)使学生掌握直线和平面垂直的定义及判定定理;(2)使学生掌握判定直线和平面垂直的方法;(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。2、过程与方法(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法。3、情态与价值培养学生学会从“感性认识”到“理性认识”过程中获取新知。二、教学重点、难点直线与平面垂直的定义和判定定理的探究。三、教学设计(一)创设情景,揭示课题1、教师首先提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与

2、地面,大桥的桥柱和水面等的位置关系” ,你能举出一些类似的例子吗?然后让学生回忆、思考、讨论、教师对学生的活动给予评价。2、接着教师指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影的位置关系引出课题内容。(二)研探新知1、为使学生学会从“感性认识”到“理性认识”过程中获取新知,可再借助长方体模型让学生感知直线与平面的垂直关系。然后教师引导学生用“平面化”的思想来思考问题:从直线与直线垂直、直线与平面平行等的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与这个平面垂直呢?并组织学生交流讨论,概括其定义。如果直线 L 与平面 内的任意一条直线都垂直,

3、我们就说直线 L 与平面 互相垂直,记作 L ,直线 L 叫做平面 的垂线,平面 叫做直线 L 的垂面。如图 2.3-1,直线与平面垂直时,它们唯一公共点 P 叫做垂足。并对画示表示进行说明。Lp 图 2-3-12、老师提出问题,让学生思考:(1)问题:虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施。有没有比较方便可行的方法来判断直线和平面垂直呢?(2)师生活动:请同学们准备一块三角形的纸片,我们一起来做如图 2.3-2 试验:过ABC 的顶点 A 翻折纸片,得到折痕 AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触) ,问如何翻折才能保证折痕 AD 与桌面所在平面垂直

4、?AB D C图 2.3-2(3)归纳结论:引导学生根据直观感知及已有经验(两条相交直线确定一个平面) ,进行合情推理,获得判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。老师特别强调:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直 ”与“直线与直线垂直”互相转化的数学思想。(三)实际应用,巩固深化(1)课本 P69 例 1 教学(2)课本 P69 例 2 教学(四)归纳小结,课后思考小结:采用师生对话形式,完成下列问题:请归纳一下获得直线与平面垂直的判定定理的基本过程。直线与平面垂直的判定定理,体现的教学思想方法是什么?课后作业:课本 P70 练习 2求证:如果一条直线平行于一个平面,那么这个平面的任何垂线都和这条直线垂直。思考题:如果一条直线垂直于平面内的无数条直线,那么这条直线就和这个平面垂直,这个结论对吗?为什么?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报