1、零指数幂与负整数指数幂 教学活动设计班级_小组_ 姓名_ 使用时间 2015年_ _4 月_1_日编号_教学目标: 1.通过数字游戏的自主探究,猜想零指数幂和负整数指数幂的意义,并尝试验证其规定的合理性。2.掌握零指数幂和负整数指数幂在实际问题中的应用。3.在经历猜想验证的探究活动中发展推理能力,并能够流利地表达自己的观点。教学重点:对零指数幂和负整数幂的意义的猜想和验证过程;教学难点:零指数幂和负整数指数幂的意义在实际问题中的应用以及它们的逆用。学法指导:猜想验证应用学生课前知识储备:(设计意图:通过复习让学生更好的用旧知识的迁移推导新知识)用符号语言表达“同底数幂的除法法则” :文字表述:
2、法则的使用条件:理由:情境导入:(以生动形象的动点问题导入新课,激发学生探求欲。 )数字游戏:(投影)一动点 P 按照“跳中点”的规则,从数轴上的数字 16 处出发,第一次跳到数字 8 处,第二次跳到 4 处,第三次跳到 2 处,按照此规律,你能依次说出其跳动到的其他数字吗?你能用 2 的幂的形式来表达这些数字吗?课内探究活动设计:验证猜想:(老师与学生一起完成)1.根据除法运算方法直接计算:2323= ( ) ( )= ( ) 2.根据同底数幂的除法运算性质计算:2323=2( ) = 2( )结论: 20=( ) 类比零指数幂的验证过程自主验证负整数指数幂的意义 :(学生自主完成,“一帮一
3、”小队分工、合作、交流、汇报)(1) 2324(2) 2225(3) 333要求:1. 请每一小队的队员用除法运算计算,队长用同底数幂相除的法则计算。2. 对照你们计算的结果,每一小队汇报你们发现的结论。3. 你能用一个公式表达这一发现吗?(队员、队长分别汇报,并汇报自己小队发现的结论)问题跟进:你能发现负整数指数幂转化为常规数字的转化规律吗?“一帮一”小队交流、汇报。自学质疑:学生自主阅读课本 96 页、98 页,要求: 1.用符号语言和文字用语言两种语言熟记法则。 2. 你对刚才验证的结论还有质疑吗? 3.你认为掌握零指数幂的法则有哪些注意要点呢? 4.你能尝试用一种新的运算顺序进行负整数
4、指数幂的运算吗?学生活动:1.自主思考,小队交流后,队员回答自己的质疑,队长点评、补充。 2.“一帮一”小队到黑板前讲解发现的“负整数指数幂的另一种运算顺序” 。在理论上储备了知识后,指导学生自学例 1、例 2,体验法则的应用,思考:例 1 是哪几种运算的混合运算?零指数的底数是什么?变式训练:(学生口答完成):(1) (2x) 0= (2 ) -2x0 =(3) (-3)2-(-1)0= 快乐套餐:(体验底数不能等于零条件的应用)(1)若(x-1) 0 =1,则 x (2)若(x 2+1)0 =1,则 x (3)若 (3)a-2 =1,则 a=风险提速(体验法则逆用,掌握开放问题的分类讨论思
5、想):若某数的乘方结果为 1,你能说一说这个数是多少吗?自学例 3.例 4 指导: 引导学生用另外的方法解答例 4。学生活动:1.提问自学例题时的困惑,2.到黑板板演不同的解答方法,3.学生比较不同方法的解答,总结较为简练的解答方法。跟踪练习评测:1.下列计算正确的是:( )A(-1) -1=1 B (-3)-2=6 C -30= -1 D 2-2= -142.计算:(1) ( ) -2 (2) 3-1-(-3)0变式训练:(法则逆用, “一帮一”合作小队交流讨论,小队代表讲解思路,寻找问题的切入点,教师提炼、升华。)1.若 3x=127 则 x = .2.已知(43) 2n= (34) n-3,求 n 的值。当堂达标基础篇:1.计算(-1 ) 0-(12) -1=( )A 1 B -1 C 3 D -3拓展篇:2.已知(a-2) 0无意义,求( 15) -a 的值。提高篇:3.若(x-1 ) x-3=1,试确定 x 的值。课外延伸:(作为课后研究的小课题,为下节课学习科学技术法做好铺垫)你会用 10 的幂的形式表达下列数字吗?你发现了什么规律?0.1=( ) , 0.01=( ) , 0.001=( ) , 0.0001=( ) 0.001=( ) (共有 n 个 0)课堂小结:1.知识收获:2.方法积累:作业:1.练习册38 页;2.探究达标检测的“课外延伸” 。板书设计