1、 一、素质教育目标(一)知识教学点:1使学生会用描点法画出二次函数 y=ax2+bx+c的图象;2使学生会用配方法确定抛物线的顶点和对称轴(对于不升学的学生,只要求会用公式确定抛物线的顶点和对称轴);3使学生进一步理解二次函数与抛物线的有关概念;4使学生会用待定系数法由已知图象上三点的坐标求二次函数的解析式(二)能力训练点:1培养学生分析问题、解决问题的能力;2向学生进行配方法和待定系数法的渗透,使学生能初步掌握;3在待定系数法的教学中培养学生的计算能力(三)德育渗透点:向学生进行事物间是互相联系及互相转化的辩证唯物主义观点教育二、教学重点、难点和疑点1教学重点:用配方法确定抛物线的顶点坐标求
2、对称轴及用待定系数法由已知图象上三点的坐标和二次函数的解析式因为它们是画出二次函数 y=ax2+bx+c的图象的基础2教学难点:配方法的推导过程,因为虽然这种方法在前面学习一元二次方程时介绍过,但是在配方的过程中需要考虑加、减的数,对学生有一定的难度三、教学步骤(一)明确目标在前几节课的基础上,我们已经能画出形如 y=a(x-h) 2+k的图象,并能指出它的对称轴和顶点坐标,对于一般形式的二次函数 y=ax2+bx+c应如何解决这些问题呢?这就是我们这节课的主要任务之一(板书)(二)整体感知提问:说出下列抛物线的开口方向、对称轴与顶点坐标: 1.2).(7.0)2(;3)5(21) xyxy
3、4314;03(5)y=a(x-h) 2+k(出示幻灯片)通过这些练习题,使学生对以前的知识加以复习巩固,以便这节课的应用这几个问题可找层次较低的学生回答,由其它同学给予评价我们已画过二次函数 y=a(x-h) 2+k的图象,画它的图象的第一步是干什么?(列表)列表时我们是怎样取值的呢?(先确定中心值)若我们要画二次函数 y=ax2+bx+c的图象应怎么办呢?学生讨论得到:把二次函数 y=ax2+bx+c转化成 y=a(x-h) 2+k的形式再加以研究提问:怎样能把二次函数 y=ax2+bx+c转化成 y=a(x-h) 2+k的形式呢?我们先来看几个练习题:(出示幻灯)填空:(1)x 2+bx
4、+_=(x+_) 2;(3)x 2+4x+9=(x+_) 2+_;(4)x 2-5x+8=(x-_) 2+_;先由学生自己填,若在填的时候有问题,可以互相讨论之后再填然后由学生回答答案,对一下关键是由学生来总结:这几个空是怎样填上的?总结规律:当二次项的系数为 1时,常数项须配一次项系数一半的平方提问:当二次项的系数不为 1时,应怎么办呢?答:利用提公因式法,首先把二次项的系数化成 1,再用上述方法下面,我们就一起来看一个具体的问题:(出示幻灯)点坐标分析:首先要用配方法将函数写成 y=a(x-h) 2+k的形式;然后,确定函数图象的开口方向、对称轴与顶点坐标;接下来,利用函数的对称性列表、描
5、点、连线这里的关键步骤是用配方法把函数改写成 y=a(x-h) 2+k的形式应按怎样的方式来做呢?(教师边提问、边讲解、边板书)然后,把括号内的部分配成一个完全平方(即先加,再减一次项系这就与 y=a(x-h) 2+k的形式一样,就可以由学生独立完成余下的部分了注意:描点画图时,要参照已知抛物线的特点,一般先找出顶点,并且用虚线画出对称轴,然后再对称描点,最后,用平滑曲线顺次连结各点画完图之后,可让学生观察图象,思考:提问:1这条抛物线与哪条形如 y=ax2的抛物线形状相同?为什么?则 a的值就相同这个问题可根据学生的层次决定问还是不问,关于这个问题的回答(6,3)而成的,也可以按照沿轴移动的
6、方式来回答上面,我们研究了如何把一个具体的二次函数通过配方的方法来加以研究,对于一般的二次函数 y=ax2+bx+c应怎样解决呢?(出示幻灯)例 1 通过配方求抛物线 y=ax2+bx+c的对称轴和顶点坐标学板书,然后视情况加以讲解,补充和纠正最后,加以总结,形成规律:(板书)式就可以了练习题 1 口答2,3 题笔答.我们已经学过用待定系数法确定正比例函数与一次函数的解析式,需要知道图象上的几点才能利用待定系数法来确定函数的解析式呢?试想,关于一般的二次函数 y=ax2+bx+c,已知函数图象上的几点,可以用待定系数法来求出这个函数的解析式呢?下面,我们就来看今天的第二个例题:(出示幻灯)例
7、2 已知一个二次函数的图象经过(-1,10),(1,4),(2,7)三点求这个函数的解析式根据此题的程度可由学生自主完成,注意提醒学生先要将函数的一般形式设出来,之后再用待定系数法求解练习题 1、2 找两名同学上黑板板演,其他同学在练习本上完成,统一答案即可(三)重点、难点的学习及目标完成过程本节课的第一个重点是用配方法确定抛物线的顶点和对称轴为了学生能在较复杂的题中顺利应用配方法,教师首先出示了几个较简单的练习由学生完成,并来讨论做题思路有了基本思路之后,再来观察给出的这几个练习题的共同特征:二次项系数为 1由此引出:若二次项的系数不为 1怎么办?学生较易想到要使它变为 1,跟着就提出:怎样
8、能使二次项的系数变为 1呢?用提公因式法而一旦二次项的系数变为 1之后,就可以按照上面的思路来解决了,这样这个重点和难点也就得到了自然地突破本节课的第二个重点是用待定系数法由已知图象上三个点的坐标求二次函数的解析式由于待定系数法已在前面交待过,所以教师可以完全放手由学生自主完成,这样更能体现课堂教学中以学生为主体,教师为主导的精神(四)总结、扩展提问:1本节课我们共学习了几种数学方法?各是什么?2用配方法将二次函数 y=ax2+bx+c变形成 y=a(x-h) 2+k的形式的一般步骤是什么?3经过配方得到:二次函数 y=ax2+bx+c的图象的对称轴和顶点坐标各是什么?4用待定系数法确定函数的解析式,选用图象上的几点,通常是由什么来决定的?五、板书设计138 二次函数 y=ax2+bx+c的图象(三)引例: 例 1: 例 2: