1、第 1 课时教学内容用直接开平方法、因式分数法求解一元二次方程的结构形式教学目标1知识与技能(1)了解可用直接开平方法求解的一元二次方程的结构形式(2)会用直接开平方法解简单的一元二次方程(3)了解可用因式分解法求解的一元二次方程的结构形式(4)会用因式分解法简单的一元二次方程2过程与方法(1)经历用直接开平方法和因式分解法求解一元二次方程的过程(2)体会解一元二次方程过程中降次的思想(3)体验数学解题策略的多样性3情感、态度与价值观(1)体验数学活动充满着探索与创造(2)在合作交流的学习中大胆发表自己的见解(3)体验运用知识解决问题的成功感受重难点、关键1重点:用直接开平方法和因式分解法解简
2、单的一元二次方程2难点:解一元二次方程过程中形成降次的解题思想3关键:认识用直接开平方法或用因式分解法求解的一元二次方程的结构形式教学准备1教师准备:平方根内容复习图表2学生准备:平方根的复习提纲教学过程一、复习回顾,导入新课1求出下列各式中 x 的值,并说说你的理由(1)x 2=9 (2)x 2=5 (3)x 2=a(a0)二、合作交流,探索新知1试一试解下列方程,并与同伴交流(1)x 2=25 (2)x 2-81=02点拨:方程(1)由平方根意义可得:x=5,这种方法叫做直接开平方法或通过移项得:x 2-25=0,再由平方差公式得:( x+5) (x-5)=0,则有 x+5=0 或 x-5
3、=0,从而得出方程的解:x 1=5,x 2=-5,这种方法叫做因式分解法方程( 2)的解法与上述类似 3概括可用直接开平方法或用因式分解法求解的一元二次方程的结构形式及其操作过程三、范例学习,加深理解例 1:解下列方程1x 2-3=0 24x 2-9=0例 2:解下列方程12x 2+3x=0 2x 2=7x四、随堂练习,巩固深化1基础训练课本 P22 练习第 1、2 题2探研时空解下列方程(1)x 2+2x+1=0 (2 )x 2+4x+4=0(3)x 2-6x+9=0 (4)x 2+x+ =01点拨:利用公式:a 2+2ab+b2=(a+b)将上述方程的左边写成完全平方的形式五、归纳总结,提
4、高认识1综述本节课的主要内容2谈谈本节课的收获与体会3展示本节课的总结图表六、布置作业,专题突破1课本 P31 习题 232 第 1(1)(4)题2选用课时作业设计七、课后反思(略)第一课时作业设计1用直接开平方法解下列方程 (1)x 2-12=0 (2)x 2-2 =014(3)2x 2-3=0 (4 )3x 2- =0162用因式分解法解下列方程:(1)x 2=1 (2) x2-5x=0(3)x 2-6=0 (4)1-2x 2=0f3解下列方程:(1) (x+1) 2=0 (2)9x 2-25=0 (3)x(x-2)=3(x-2)4 (06,南宁市中考题)方程 x2-x=0 的解为_答案:1 (1)x 1= ,x 2=- (2)x 1= ,x 2=- 3(3)x 1= ,x 2=- (4)x 1= ,x 2=- 642 (1)x 1=1,x 2=-1 (2)x 1=0,x 2=5 (3)x 1= ,x 2=- (4)x 1= ,x 2=- 63 (1)x 1=x2=-1 (2)x 1= ,x 2=- (3)x 1=2,x 2=3 4x 1=0,x 2=15