1、课题 1.6 三角函数模型的简单应用 课型 新课课时计划 共 2 课时(其中新课课时巩固课时) 配套作业教学目标知识能力情感知识与技能:掌 握 三 角 函 数 模 型 应 用 基 本 步 骤 :(1)根 据 图 象 建 立 解 析 式 ; (2)根 据 解 析 式 作出 图 象 ; (3)将 实 际 问 题 抽 象 为 与 三 角 函 数 有 关 的 简 单 函 数 模 型.过 程 与 方 法 :选 择 合 理 三 角 函 数 模 型 解 决 实 际 问 题 , 注 意 在 复 杂 的 背 景 中 抽 取 基 本 的数 学 关 系 , 还 要 调 动 相 关 学 科 知 识 来 帮 助 理 解
2、 问 题 。切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用及数学和日常生活和其它学科的联系。情 态 与 价 值 :培 养 学 生 数 学 应 用 意 识 ;提 高 学 生 利 用 信 息 技 术 处 理 一 些 实 际 计 算 的 能 力 。教学重点 用三角函数模型解决一些具有周期变化规律的实际问题。教学难点 将某些实际问题抽象为三角函数的模型。教学方法教学用具仪器媒体 多媒体教后感第一课时 1.6 三角函数模型的简单应用(一)一、复习准备:1. 函数 f (x)的横坐标伸长为原来的 2 倍,再向左平移 个单位所得的曲线是 的图像,试21sinyx求 的解析式.()yf2. 函
3、数 的sin(),(0,|)2Ax最小值是2 ,其图象最高点与最低点横坐标差是3,且图象过点(0,1),求函数解析式.二、讲授新课:1. 教学典型例题: 出示例 1:如图,某地一天从 6 时到 14 时的温度变化曲线近似满足函数 ,sin()yAxb试求这段曲线的函数解析式.讨论:如何由图中的几何特征得到曲线的各参量?(由周期、振幅确定 A、b、;再由特殊点确定初相 )教师示例 小结:观察几何特征,转化为相应的数量关系. 练习:如图,它表示电流在一个周期内的图sin()(0,)IAt象. ( i)试根据图象写出 的解析式. sin(yAt( ii)在任意一段 秒的时间内,电流 I 既能取310
4、得最大值 A,又能取得最小值 A 吗?(答案: ; sin()3It由 得不可能)3501T 出示例 2:作出函数 ysin x的图象,指出它的奇偶性、周期和单调区间.讨论:绝对值的几何意义? 作简图 由图说性质变式:研究 ycos x、 ytan x. 小结:数形结合思想研究函数性质.出示例 3:例 3 是研究楼高与楼在地面的投影长的关系问题,是将实际问题直接抽象为与三角函数有关的简单函数模型,然后根据所得的模型解决问题。应当注意在 复 杂 的 背 景 中 抽 取 基 本 的 数 学 关 系 , 还 要 调动 相 关 学 科 知 识 来 帮 助 理 解 问 题 。2.小结:给图求式;给式应用
5、;待定系数法.三、巩固练习:1. 练习:教材 P65 练习 1 题.2. 作业:书 P65 习题 1、2、3 题.第二课时: 1.6 三角函数模型的简单应用(二)1情景展示,新课导入2问题提出,探究解决【师】若干年后,如果在座的各位有机会当上船长的话,当你的船只要到某个港口去 ,你作为船长,你希望知道关于那个港口的一些什么情况?【生】水深情况。【师】是的,我们要到一个陌生的港口时,是非常想得到有关那个港口的水深与时间的对应关系。请同学们看下面这个问题。问题探究 1:如图所示,下面是某港口在某季节每天的时间与水深的关系表:请同学们仔细观察表格中的数据,你能够从中得到一些什么信息?小组合作发现,代
6、表发言。可能结果:1)水深的最大值是 7.5 米,最小值是 2.5 米。2)水的深度开始由 5.0 米增加到 7.5 米,后逐渐减少一直减少到 2.5,又开始逐渐变深,增加到 7.5 米后,又开始减少。3)水深变化并不是杂乱无章,而是呈现一种周期性变化规律。4) 学生活动:作图更加直观明了这种周期性变化规律。(研究数据的两种形式)5)教师呈现作图结果,学生小组代表发言,跟我们前面所学过哪个函数类型非常的类似?追问为什么类似正弦型函数 (排除bxAy)sin(法,关键在于周期性)。(学生活动,求解解析式)得到的是一个刻画水深与时间关系的三角函数模型,为了保证所选函数的精确性,通常还需要一个检验过
7、程,教师点明:建模过程选模,求模,验模,应用。有了这个模型,我们大致可以知道哪些情况?学生小组合作讨论回答,如周期、单调性、每时每刻的水深。学生计算几个值,最后教师呈现水深关于整点时间的数值表【师】有了水深关于时间的函数模型以后,作为船长考虑的问题还没有结束,因为船只在进出港时,每艘船只的吃水深度是不一样,下面我们就看一看把这两方面的情况都考虑进去的一个问题:问题探究 2:一艘货船的吃水深度(船底与水面的距离)为 4 米,安全条例规定至少要有 1.5米的安全间隙(船底与洋底的距离),试问:该船何时能够进入港口?在港口能呆多久?(师生一起分析)用数学的眼光看,这里研究的是一个怎样的数学问题?水深
8、 米5.得出 ,即 ,1456sin.2x2.06sinx(师生齐分析)解三角不等式 的方.si法 令 学生活动:操作计算器计算2.06sinx, 结合电脑呈现图象384,1.发现:在0 ,24 范围内,方程的解一共有 4 个,从小到大依次记为:2.06sinx那么其他三个值如何求得呢?(学生思考)得到了 4 个交点的横坐标值后,结合图象说说货船应该选择什么时间进港?什么时间出港呢?(学生讨论,交流)可能结果:【生 1】货船可以在 0 时 30 分钟左右进港,早晨 5 时 30 分钟左右出港;或者是中午12 时 30 分钟左右进港,在傍晚 17 时 30 分钟左右出港。【生 2】 货船可以在
9、0 时 30 分钟左右进港,可以选择早晨 5 时 30 分,中午 12 时 30 分,或者傍晚 17 时 30 分左右出港。(学生讨论,最后确定方案 1 为安全方案,因为当实际水深小于安全深度时,货船尽管没有行驶,但是搁浅后船身完全可以馅入淤泥,即使后来水位上涨,也很可能船身不再上浮)刚才整个过程,货船在进港,在港口停留,到后来离开港口,货船的吃深深度一直没有改变,也就是说货船的安全深度一直没有改变,但是实际情况往往是货船载满货物进港,在港口卸货,在卸货的过程中,由物理学的知识我们知道,随着船身自身重量的减小,船身会上浮,这样一来当两者都在改变的时候,我们又该如何选择进出港时间呢?请看下面问题
10、:问题探究 3:在探究 2 条件中,若该船在2:00 开始卸货,吃水深度以每小时 0.3 米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?(学生讨论)安全即需要:实际水深 安全水深,即:,讨论求解方法:用代数的方法?几何的角度?(电脑作图并呈现)通过图象可以看出,当快要到 P 时刻的时候,货船就要停止卸货,驶向深水区。那么 P 点的坐标如何求得呢?(学生思考,讨论,交流)求 P点横坐标即解方程数形结合,二分法求近似解:由图得点 P 点横坐标在 6,7,故我们只需要算出 6,6.5,7 三个时刻的安全水深与实际水深的数值表就可以回答上面的问题。时间 实际水深 安全水深 是否安全
11、6 5 米 4 3 米 安全6.5 4 2 米 4 1 米 较安全7 3 8 米 4 0 米 危险货船应该在 6 时 30 分左右驶离港口。(可能有的同学有些异议,可以讨论)从这这个问题可以看出,如果有时候时间控制不当,货船在卸货的过程中,就会出现货还没有卸完,不得已要暂时驶离港口,进入深水区,等水位上涨后在驶回来。这样对公司来说就会造成才力、物力上的巨大浪费?那该怎么来做呢?(学生讨论)可以加快卸货速度,也就是加快安全深度下降速度。 3课时小结,认识深化(师生一起归纳)3-1 回顾整个探究过程,经历了第一阶段:收集数据-画散点图第二阶段:根据图象特征-选模、求模、验模第三阶段:函数模型应用3-2 在整个探究过程,我们用到数学常见的一些思想方法:(1)对实际问题处理过程是,首先是挖掘其中的数学本质,将实际问题转化为数学问题;体现了数学中的转化思想;(2)在对一些数据处理的过程用到了估算的思想;(3)在用代数方法处理困难的一些题目的解决中,用到了数形结合的思想;(4)在方程的求解过程中,用到了算法中“二分法”思想。4教师演示激发学生思考并进一步探究:生活中哪些现象与三角函数模型有关?-周期性5作业布置