收藏 分享(赏)

6sigma培訓基本统计概念pppt49.ppt

上传人:精品资料 文档编号:5042349 上传时间:2019-02-02 格式:PPT 页数:49 大小:612.50KB
下载 相关 举报
6sigma培訓基本统计概念pppt49.ppt_第1页
第1页 / 共49页
6sigma培訓基本统计概念pppt49.ppt_第2页
第2页 / 共49页
6sigma培訓基本统计概念pppt49.ppt_第3页
第3页 / 共49页
6sigma培訓基本统计概念pppt49.ppt_第4页
第4页 / 共49页
6sigma培訓基本统计概念pppt49.ppt_第5页
第5页 / 共49页
点击查看更多>>
资源描述

1、6普及培训,第二部分 基本统计概念,(ZTE-WB102-V1.0),2002年三月,统计概念,解释以下基本统计概念。 1. 波动(偏差) 2. 连续数据和离散数据 3. 平均值、方差、标准差 4. 正态曲线 5. 用Z值将数据标准化 6. 中心极限定理 7. 过程能力- 使用Z值作为衡量工序能力的指标- 通过改进关键值Xs来改进Y 8.稳定性因子,波动,所有的人不会都是同样的高度; 所有的葡萄不可能同一天采摘 问题: 你期望存在波动吗?什么类型的波动?,观测值变化,当重复进行测量的时候,通常会得到不同的答案, 这就是波动!,系统波动预期的和可预测的测量结果之间的差异。举例: 夏季和冬季的空调

2、的销售量不同。,随机波动不可预测的测量结果之间的差异。举例:具有同一种设计的两台冰箱,由同一个技术人员、在同样的气温条件下、使用同样的测量仪器,在两个不同的日子对其能量消耗进行测试.可能得到两个不同的结果。,1.,2.,观测值变化(续),我们预期观测值会有差异。如果没有差异,我们就会产生怀疑。如果所有地区的手机销售量是一样的,那么我们就会怀疑是数据库出了问题。.如果我们测量10台电冰箱,得到同样的能耗测量结果,我们就会怀疑测量是否正确。,这种变化使我们的工作更具挑战性!一般来说,我们不能相信来自一个数据点的结果。通常我们收集多个数据点,而且非常注意如何选取这些样本,以减少偏差。,波动的产生是很

3、自然的,意料之中的,是统计学的基础,统计学的作用,统计学用以下方法处理误差:,(置信区间和假设检验)。,统计描述,用图表和几个总结性数字(均值、方差、标准差)描述一组数据。,统计推理,确定结果之间的差异何时可能是由于随机误差引起的,何时不能归因于随机误差。,试验设计,数据的两种类型,连续 (可变) 数据 使用一种度量单位,比如英寸或小时。离散 (属性) 数据是类别信息,比如“ 通过” 或“ 未通过”。,连续数据,离散数据,问题,解决办法,举例: 部件号 离散 连续1 通过 2.0312 通过 2.0343 未通过 2.0764 通过 2.0225 未通过 2.001,连续数据以参数的形式,比如

4、尺寸、重量或时间,说明一个产品或过程的特性。测量标准可以有意义地不断分割,使精确度提高。,你能举出我们用来获得连续数据的三个器具例子吗?,相对于仅仅知道部件是否合格而言, 连续数据可以提供更多的信息。,连续数据(也称为可变数据),离散数据不能更进一步精确地细分。,离散数据是某件事发生或未发生的次数,以发生的频数来表示。离散数据也可以是分类数据。如:销售地区、生产线、班次和工厂。,离散数据(也包括属性或类别数据),地区,亮和不亮,离散数据,离散数据举例: 有凹痕的部件数量 通过/未通过 申诉决议 产出 生产线不合格品数量 及时交货,离散数据需要更多的数据点才能进行有效的分析,请在下面的例子旁,写

5、出它是“连续”还是“离散”,1 销售订单准确度 2 数据输入准确度 3 销售地区 4 使用“合格/不合格”测量仪器得到的孔径 5 孔径 6 应答中心对话时间 7 制冷氟利昂的重量(克) 8 每百万部件中有缺陷部件的数量 9 装配线缺陷(ALD),应用你所学到的东西,总体 全组数据,全部对象。 - 一个总体中的元素数量用N来表示样本 总体的一个子集- 样本的元素数量用n 来表示平均值 总体或样本的平均值 - 总体的平均值用来表示 样本的平均值用X 或来表示方差 数据与其平均值之间差值的平方的平均值 。(它代表该组数据的分散程度)- 总体的方差用 表示- 样本的方差用s2或表示均方差是方差的 (正

6、) 平方根。 (它也代表该组数据的分散程度)。-总体的标准差用 来表示-样本的标准差用s或来表示,统计学术语,统计学术语和定义,总体 全部对象. 举例 1998年5月在深圳生产的所有的21英寸彩电样本 代表总体的一个子集数据。 举例 - 1998年5月在深圳生产的一百二十台21英寸彩电举例:,这个矩阵代表25个X的总体。画上圆圈的那些是由总体中的六个X组成的样本。,平均值 - 总体或样本的平均值。用x或来表示样本,用来表示总体。举例:给定一个样本:1,3,5,4,7 ,平均值就是:,统计学术语和定义,x,=,x,n,在这里X1是样本的第一个点,,Xn是样本的最后一个点。,.,i,1,n,平均值

7、的公式,样本的平均值等于4。,标准差 衡量数据分散程度的一个指标。一般用表示总体,用s 或 表示样本。,=,(,X,i,-,),2,i,=,1,N,N,总体的公式,方差 - 与平均值之差的平方的平均值。一般用s2或2来表示。,样本的公式,统计学术语和定义,举例,课堂举例: 计算样本2, 6, 4 的方差和标准差 首先计算均值: (2 + 6 + 4) / 3 = 12 / 3 = 4,计算平均值、方差和标准差,x,=,x,n,i,i=1,n,平均值 方差 标准差,方差 (s2) = 8 / (3 - 1) = 4标准差 (s) = sqrt(4) = 2,i xi (xi-4) (xi-4)2

8、1 2 -2 42 6 2 43 4 0 0和 12 0 8,课堂练习,课堂举例: 计算样本1,3,5,4,7 的方差和标准差(使用下面的表作为向导。) 首先计算平均值X:,计算平均值、方差和标准差,x,=,x,n,i,1,n,均值 方差 标准差,方差 (s2) =标准差 (s 或 ) =,统计学术语和定义,缺陷;未满足与预期或规定用途有关的要求。(引起顾客不满意) 单位缺陷数(DPU):PPM(Parts per Million)不合格品PPM= 用PPM来表示缺陷率: PPM=DPU 1000000,不合格品数量,检验的产品数量,1000000,x,x,统计术语和定义,缺陷机会:做一项工作

9、(或生产一件产品等)所有产生缺陷的可能性。如: 一个过程的步骤数; 一个产品的零件数。每百万机会的缺陷数(DPMO)DPMO =,单位缺陷数,每单位的缺陷机会,1000000,我能计算缺陷率吗?,我的过程产生了多少缺陷?,生产40000只灯泡,其中50只有缺陷. DPMO是多少?,如何计算DPMO?,我的过程产生了多少缺陷?,1999年A19灯泡的客户退货率是1.0%。DPMO是多少?,x,1,000,000,=,如何把%转化成 DPMO?,把%转化成 小数,DPMO,小数点向前移动2位,0.01,x,1,000,000,=,10,000 DPMO,作业 - 商务,一名客户服务代表3天收到这些

10、电话:,未回答电话的DPMO是多少: a) 第1天 b)第2天 c)第3天 d) 3天,绘制直方图,75,70,65,60,15,10,5,0,高 度,频 数,59 61 63 63 64 5962 66 65 65 64 6065 62 64 68 70 6563 64 68 66 65 6667 64 66 58 65 6571 63 69 63 66 7064 67 64 66 62 6464 64 61 64 63 6564 68 66 67 69 7168 66 65 63 64 6468 67 65 64 65 6470 65 68 65 66 6966 66 65 63 68 6

11、662 67 65 66 67 6660 67 63 60 64 73,90位女士的身高,用直方图形成一个连续分布,测定单位,条形的中心点,平滑的曲线连接每个条形的中心点,许多(但非全部) 数据符合“正态”分布,或钟形曲线。,正态分布的标准差(),拐点,1,USL,p(d),上限 (USL) 下限 (LSL) 均值 () 标准差 (),3,拐点与平均值之间的距离是一个 标准差。如果三倍的标准差都落在目标值和规范的上下限内,我们就称这个过程具有“三个西格玛能力”,平均值,LSL,曲线从较陡的状态变得越来越平坦,面积和概率,正态曲线与横轴之间的面积等于1,所以曲线下面的面积与缺陷发生的概率相关。,

12、正态分布可以用来将 和 转换为 出现缺陷的百分比。,规范上限,出现缺陷的概率= .0643,假设Z = 1.52。1.52之外的正态曲线下部的面积就是出现缺陷的概率。Z值是工序能力的一种尺度,通常称为“工序的西格马”,不要与过程标准差混淆。,Z,曲线下的整个面积是1, = 0,( 在这里 = 1 , = 0 ),使用正态表,Z = 1.52,下页上的表列出了Z值右边的面积。,正态分布,科学记数法,科学记数法是将数字写成一个数字的10次幂的一种方法。我们来看一些用科学记数法表示的数字。,6.43E-02 是.0643 的科学记数法格式。 6.43E-02 = 6.42 x 10-2 = .064

13、2 6.43E-02,实际数字,科学记数法,6.43 代表基数,将基数乘以10的幂:10-2,127,1.27E+02,22416,2.24E+04,0.0643,6.43E-02,0.000056,5.60E-05,2.051,2.05E+00,如果“E”后面的数字是负的,那么就将数字的小数点的位置挪到左边。,Z值 转化为“标准正态”,我们需要利用正态分布的平均值和标准差将其转化为“标准正态”分布,以便使用标准正态分布表来获得概率。,通过转换将变量(y) 转换为标准正态分布。标准正态分布的平均值 ( = 0, 标准差 () = 1.,规范上限 (USL),出现一个缺陷部件 的概率,USL -

14、 ,Z =,对于规范的上限:,正态分布举例,规范是1.030” + .030 = ( 1.000, 1.060 ) 假设我们测量了30个部件,X = 1.050, s = .015 计算一下不符合规范的部件的比例,1.020 1.035 1.050 1.065 1.080,LSL,USL,目标值,X,数据的实际分布,现状分析报告中的Z值就是ZBench 。,ZBench 的定义,PUSL 是相对USL而出现缺陷的概率。 PLSL 是相对LSL而出现缺陷的概率。 PTOT 是出现缺陷的总概率PTOT = PUSL + PLSL ZBench 是与出现缺陷的总概率相对应的Z值,可从正态表中查到。,

15、25.14%,.04%,ZLSL = 3.33,ZUSL = 0.67,25.18%,ZBENCH = .67,从正态表获得面积 (合格品和不合格品的百分比),例 1 : Z = 2.00右边的面积 = _左边的面积 = _ 例 2 : Z = 1.57 右边的面积 = _ 左边的面积 = _ 例 3 : = 6.34= .03x = 6.41 计算 Z = x - 右边的面积 = _左边的面积 = _,中心极限定理 - 为什么我们得到的通常是正态分布,平均值分布 n个测量结果的平均值,单个变量的分布图,每个子群中有 “n” 个样本。,中心极限定理(例),中心极限定理 - 为什么我们通常得到正

16、态分布,例1 “总销量”是许多经销商的销售量的总和。一个经销商的销售量可能不是正态分布,但总销量很可能近似于正态分布。,例2 一堆部件的高度可能近似服从于正态分布,尽管个别部件的高度不是正态分布。,注意: 不是所有数据都符合正态分布。 后面我们将讨论如何检验正态性,以及如何处理非正态分布数据。,Z 作为一种能力的尺度,z,随着偏差减小, 出现缺陷 的概率降低, 所以,能力提高。,我们希望: 小 z大,提高工序能力,独立变量 (Xs) 有时被称为“根本原因系统”。,因变量 (Y) 有时被称为响应变量。Y取决于独立变量,或“X”变量。,至关重要的少数变量也被称为“杠杆”变量,因为它们对因变量具有重

17、大影响。,统计学问题: 是均值偏离、偏差过大,还是两者兼而有之,改进的焦点,能力,这适用于所有过程 制造业和商业。,稳定运行可以从过程中消除偏差,使结果更加稳定、提高可预测度。,偏差是恶魔,发现它并且清除它!,低劣表现 出色表现,客户: “我希望每天都 这样”,稳定的运行,根除坏日子,提高一致性,提高平均值。,将坏日子变为好日子,原来的行为 增加平均值。偏差保持不变。依然存在着坏日子!,稳定运行 根除过程的“不稳定“部分(坏日子)。平均值也增加了!,初始表现,根除坏日子,改进一致性,提高平均值。,平均值,平均值,平均值,稳定的运行会降低偏差,Q3,Q31,Q3= 23646,Q1= 12215

18、,原始数据,分类后,顶部25%,底部25%,1) 测量您的工序每天的产量。 2) 将数据按从最好到最坏顺序排列。 3) 将数据四等分。Q1 = 1/4 的日子较差。3/4 的日子较好。Q3 = 3/4 的日子较差。1/4 的日子较好。 4) 计算稳定性因子 (SF): SF = Q1 / Q3= 12215 / 23646= .52,随着偏差的降低,稳定性因子越来越接近1.0。,“稳定性因子”:Q1 / Q3,根除坏日子,提高一致性,提高平均值,平均值,初始表现,Q1,Q3,稳定操作降低偏差,偏差是恶魔。发现它,并且消除它!,稳定运行带来的好处,客户会看到更高的一致性和可靠性。 过程的可预测性

19、增加,更易于管理。 平均值(能力)更高。利用“隐蔽的工厂”。,低劣表现 出色表现,客户: “我每天都希望 实现这个目标”,稳定运行:如何实现,1. 在测量阶段,计算您的过程的稳定性因子。发现那些具有低稳定性因子的过程,那些具有最大改进机会的过程。2. 使用分析方法筛选出可能导致坏日子的关键因素X。3. 使用改进方法来确认将坏日子变成好日子的关键因素X。4. 控制关键因素X,保持高稳定性。,使用六个西格玛方法来实施稳定操作。,关键概念: 统计学概念,误差存在于所有过程。 连续(可变) 数据可以有意义地进一步分割,例如,长度,重量。 离散 数据是以类别形式存在的,不能进行分割。 总体就是全部对象。

20、 样本 就是总体的一个子集。 平均值 分布的平均数。 标准差 分布的分散程度。 方差 标准差的平方。 正态分布 对称分布于平均值两边的数据,钟形曲线。 标准正态分布 具有平均值(m) = 0 和标准差(s) = 1 的正态分布。,关键概念: 统计学概念,中心极限定理表明,无论单个变量是不是服从正态分布,多个变量的平均值或总和通常近似于正态分布。 Z 值是平均值与规范的上下限之间所包含的标准差个数 Y (响应变量) - 因变量 X (因素) - 独立变量 Y = f(X): Y 取决于X。通过确定和改进关键的X变量来改进Y。 过程能力 过程的偏差与其要求(规范)之间的比较。 稳定运行 - 集中于降低偏差,使坏日子变成好日子。 稳定性因子 - Q1/Q3. 第一个四等分/ 第三个四等分。,谢 谢!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报