收藏 分享(赏)

创新设计理科5-4.ppt

上传人:eco 文档编号:5004660 上传时间:2019-01-29 格式:PPT 页数:32 大小:1.74MB
下载 相关 举报
创新设计理科5-4.ppt_第1页
第1页 / 共32页
创新设计理科5-4.ppt_第2页
第2页 / 共32页
创新设计理科5-4.ppt_第3页
第3页 / 共32页
创新设计理科5-4.ppt_第4页
第4页 / 共32页
创新设计理科5-4.ppt_第5页
第5页 / 共32页
点击查看更多>>
资源描述

1、最新考纲 1.会用向量方法解决某些简单的平面几何问题;2.会用向量方法解决简单的力学问题与其他一些实际问题,第4讲 平面向量的应用,1向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:ab(b0)_(2)证明垂直问题,常用数量积的运算性质ab_(a,b均为非零向量),知 识 梳 理,ab,x1y2x2y10,ab0,x1x2y1y20,(3)求夹角问题,利用夹角公式cos _(为a与b的夹角) 2向量在三角函数中的应用与三角函数相结合考查向量的数

2、量积的坐标运算及其应用是高考热点题型解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识,3向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体,诊 断 自 测,答案 D,答案 y28x(x0),答案 垂心,(2)法一 如图,规律方法 用平面向量解决平面几何问题时,在便于建立直角坐标系的情况下建立平面直角坐标系,可以使向量的运算更简便一些在解决这类问题时,共线向量定理和平面向量基本定理起主导作用,规

3、律方法 (1)解决平面向量与三角函数的交汇问题,关键是准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题解决(2)熟练掌握向量数量积的坐标运算公式、几何意义、向量模、夹角的坐标运算公式外,还应掌握三角恒等变换、正、余弦定理等知识,(1)证明 由题意得|ab|22, 即(ab)2a22abb22. 又因为a2b2|a|2|b|21, 所以22ab2,即ab0, 故ab.,规律方法 向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨

4、迹、最值等问题;(2)工具作用,利用abab0;abab(b0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较可行的方法,思想方法 1向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题 2以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法,3向量的两个作用:载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;工具作用:利用向量可解决一些垂直、平行、夹角与距离问题 易错防范 1对三角形“四心”的意义不明,向量关系式的变换出错,向量关系式表达的向量之间的相互位置关系判断错误等 2注意向量夹角和三角形内角的关系,两者并不等价 3注意向量共线和两直线平行的关系;两向量a,b夹角为锐角和ab0不等价,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报