1、232 中心对称,23.2.3 关于原点对称的点的坐标,教学目标,理解点P与点P关于原点对称时它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P(x,y)的运用 复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用,重点难点,重点 两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P(x,y)及其运用 难点 运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题,教学设计,一、复习引入 (学生活动)请同学们完成下面三题 1已知点A和直线l,如图,请画出点A关于l对称的点A.,教学设计,2如图,ABC是正三角形,以点A
2、为中心,把ABC顺时针旋转60,画出旋转后的图形3如图ABO,绕点O旋转180,画出旋转后的图形老师点评:老师通过巡查,根据学生解答情况进行点评(略),教学设计,二、探索新知 (学生活动)如图,在直角坐标系中,已知A(3,1),B(4,0),C(0,3),D(2,2),E(3,3),F(2,2),作出A,B,C,D,E,F点关于原点O的中心对称点,并写出它们的坐标,并回答: 这些坐标与已知点的坐标有什么关系?,教学设计,老师点评:画法:(1)连接AO并延长AO; (2)在射线AO上截取OAOA; (3)过A作ADx轴于点D,过A作ADx轴于点D. ADO与ADO全等, ADAD,OAOA, A
3、(3,1), 同理可得B,C,D,E,F这些点关于原点的中心对称点的坐标 (学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?坐标与坐标之间符号又有什么特点?,教学设计,提问几个同学口述上面的问题 老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等(2)坐标符号相反,即P(x,y)关于原点O的对称点P(x,y) 两个点关于原点对称时,它们的坐标符号相反, 即点P(x,y)关于原点O的对称点为P(x,y),教学设计,例1 如图,利用关于原点对称的点的坐标的特点,作出与线段AB关
4、于原点对称的图形 分析:要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点A,B即可,教学设计,解:点P(x,y)关于原点的对称点为P(x,y),因此,线段AB的两个端点A(0,1),B(3,0)关于原点的对称点分别为A(0,1),B(3,0) 连接AB. 则就可得到与线段AB关于原点对称的线段AB. (学生活动)例2 已知ABC,A(1,2),B(1,3),C(2,4),利用关于原点对称的点的坐标的特点,作出ABC关于原点对称的图形 老师点评分析:先在直角坐标系中画出A,B,C三点并连接组成ABC,要作出ABC关于原点O的对称三角形,只需作出ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的ABC.,教学设计,三、巩固练习 教材第69页 练习 四、课堂小结 点P(x,y)关于原点的对称点为P(x,y) 五、作业布置 教材第70页 习题3,4.,