收藏 分享(赏)

广东学导练 八年级数学上册人教版课件:十三章13.3.1课时二.ppt

上传人:weiwoduzun 文档编号:4983790 上传时间:2019-01-27 格式:PPT 页数:19 大小:395KB
下载 相关 举报
广东学导练 八年级数学上册人教版课件:十三章13.3.1课时二.ppt_第1页
第1页 / 共19页
广东学导练 八年级数学上册人教版课件:十三章13.3.1课时二.ppt_第2页
第2页 / 共19页
广东学导练 八年级数学上册人教版课件:十三章13.3.1课时二.ppt_第3页
第3页 / 共19页
广东学导练 八年级数学上册人教版课件:十三章13.3.1课时二.ppt_第4页
第4页 / 共19页
广东学导练 八年级数学上册人教版课件:十三章13.3.1课时二.ppt_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、第十三章 轴对称,13.3 等腰三角形,广东学导练 数学 八年级上册 配人教版,13.3.2 等边三角形,课前预习,1 已知,如图13-3-6,在ABC中,OB和OC分别平分ABC和ACB,过O作DEBC,分别交AB,AC于点D,E,若BD+CE=5,则线段DE的长为( )A 5B 6C 7D 8,A,2 如图13-3-7,在ABC中,A=36,AB=AC,BD是ABC的角平分线若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( )A 2个B 3个C 4个D 5个,D,3 在ABC中,已知A=B,且该三角形的一个内角等于100现有下面四个结论:A=100; C=100;AC=BC;A

2、B=BC其中正确结论的个数为( )A 1个 B 2个C 3个 D 4个,B,4 在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是( ),B,5 如图13-3-8,在ABC中,ADBC,垂足为点 D,AD是BC边上的中线,BEAC,垂足为点E则以下4个结论:AB=AC;EBC= BAC;AE=CE;EBC= ABC 中正确的有( )A B C D ,A,名师导学,新知1,等腰三角形的判定,(1)根据定义判定.(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等,该三角形为等腰三角形.,【例1】如图13-3-9,已知点D,E是ABC的边BC上两点,且BD=CE,1=2

3、试证:ABC是等腰三角形解析 首先根据1=2可得AD=AE,ADB= AEC,然后再证明ABDACE可得AB=AC,进而可得ABC是等腰三角形,例题精讲,证明 1=2, AD=AE,ADB=AEC. 在ABD和ACE中 AD=AE, ADB=AEC, BD=EC, ABDACE(SAS). AB=AC. ABC是等腰三角形,举一反三,1 在ABC中,其两个内角如下,则能判定ABC为等腰三角形的是( )A A=40,B=50B A=40,B=60C A=20,B=80D A=40,B=80,C,2 如图13-3-10,在RtABC中,在斜边AB和直角边AC上分别取一点D,E,使DE=DA,延长D

4、E交BC的延长线于点FDFB是等腰三角形吗?请说明你的理由,解:DFB是等腰三角形 理由如下:DE=DA, A=AED. AED=CEF, A=CEF. ACB=ECF=90, A+B=CEF+F. B=F. DB=DF. DFB是等腰三角形,3 如图13-3-11,在ABC中,AB=AC,D为BC上一点,B=30,连接AD若BAD=45, 求证:ACD为等腰三角形.,证明:AB=AC, C=B=30. BAC=180-30-30=120. BAD=45, CAD=BAC-BAD=120-45=75, ADC=B+BAD=75. ADC=CAD. AC=CD, 即ACD为等腰三角形.,新知2,

5、等腰三角形“三线合一”的综合运用,1. 等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段2. 在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析,【例2】如图13-3-12,点D,E在ABC的边BC上,AB=AC(1)若AD=AE,求证:BD=CE:(2)若BD=CE,F为DE的中点,求证:AFBC解析 (1)过A作AFBC于F,根据等腰三角形的性质得出BF=CF,DF=EF,

6、即可求出答案;(2)根据等腰三角形的性质得出即可,例题精讲,证明 (1)如图13-3-13,过A作AFBC于F. AB=AC,AD=AE, BF=CF,DF=EF. BF-DF=CF-EF. BD=CE. (2)BD=CE,F为DE的中点, BD+DF=CE+EF. BF=CF. AB=AC,AFBC,举一反三,1 如图13-3-14,在ABC中,AB=AC,AD平分BAC,DEAB,DFAC,E,F为垂足,则下列四个结论:DEF=DFE;AE=AF;AD平分EDF; EF垂直平分AD其中正确的有( )A 1个 B 2个C 3个D 4个,C,2 如图13-3-15所示,在ABC中,BAC90,AB=AC,AFBC于点F,D为CA延长线上一点,EDBC于E,交AB边于点G,则图中与D相等的角的个数为( )A 3个B 4个C 5个D 6个,B,3 如图13-3-16,在ABC中,AB=AC,E在AC 上,且AD=AE,DE的延长线与BC相交于点F 求证:DFBC,证明:如答图13-3-1,过A作AMBC于M. AB=AC, BAC=2BAM. AD=AE, D=AED. BAC=D+AED=2D. BAC=2BAM=2D. BAM=D. DFAM. AMBC, DFBC,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报