1、第十二章 全等三角形,12.2 三角形全等的判定(4),【学习目标】 掌握判定直角三角形全等的一种特殊方法一“斜边、直角边” (即“HL”);2、能熟练地用判定一般三角形全等的方法及判定直角三角形全等的特殊方法判定两个直角三角形全等 【学习重、难点】 重难点:直角三角形全等判定方法“斜边、直角边” (即“HL”)的应用。,【预习导学】,一、自学指导 1、自学1:自学课本P41-42页“思考、探究5及例5”,掌握判定直角三角形全等的特殊方法“HL”,完成填空。7分钟 总结归纳:斜边和 对应相等的两个直角三角形全等,简称“ ”或 “ ”。 两直角边对应相等的两个直角三角形 ,根据是 或。 一锐角和
2、一直角边或斜边对应相等的两个直角三角形 ,根据是 或 和 或 。,一条直角边分别,斜边、直角边,HL,全等,边角边,SAS,全等,角角边,AAS,角边角,ASA,【预习导学】,二、自学检测:学生自主完成,小组内展示、点评,教师巡视。5分钟1、如图,E、B、F、C在同一条直线上,若DA90,EBFC, ABDF则RtABC ,全等的根据是 2、判断满足下列条件的两个直角三角形是否全等,不全等的画“”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和这个角的邻边对应相等;( )(3)一个锐角和斜边对应相等; ( )(4)两直角边对应相等; ( )(5)一条直角边和斜边对
3、应相等 ( )3、下列说法正确的是 ( )A一直角边对应相等的两个直角三角形全等 B斜边相等的两个直角三角形全等C斜边相等的两个等腰直角三角形全等 D一边长相等的两等腰直角三角形全等 点拨精讲:直角三角形除了一般证全等的方法,“HL”可使证明过程简化,但前提是已知两个直角三角形,即在证明格式上表明“RT”。,RttDFE,HL,C,HL,SAS,AAS,AAS,【合作探究】小组讨论交流解题思路,小组活动后,小组代表展示活动成果。10分钟,探究1 已知:如图53,ABBD,CDBD,ADBC求证:(1)ABDC;(2)ADBC,【合作探究】小组讨论交流解题思路,小组活动后,小组代表展示活动成果。
4、10分钟,探究2 已知:如图E、F分别为线段AC上的两点,且DEAC于点E,BFAC于点F,若ABCD,AECF,BD交AC点于点M. 求证:BMDM,MEMF,【跟踪练习】学生独立确定解题思路,小组内交流,上台展示并讲解思路。5分钟,1、已知:如图48,AEDF,AD,欲证ACEDBF,需要添加什么条件?证明全等的理由是什么?,解:若ACDB,则根据SAS,可以判定ACEDBF;若12,则根据AAS,可以判定ACEDBF;若EF,则根据ASA,可以判定ACEDBF.,【点拨精讲】(3分钟),1、“HL”判别法是证明两个直角三角形全等的特殊方法,它只对两个直角三角形有效,不适合一般三角形,但两个直角三角形全等的判定,也可以用前面的各种方法。2、证明两个三角形全等的方法有:SSS、SAS、ASA、AAS,HL,注意SSA和AAA条件不能判定两个三角形全等。,【课堂小结】 (学生总结本堂课的收获与困惑)2分钟【当堂训练】10分钟,