1、,第一章,电磁感应,目标定位,1.学习应用楞次定律的推论判断感应电流的方向. 2.理解安培定则、左手定则、右手定则和楞次定律的区别.,学案5 习题课:楞次定律的应用,知识探究,自我检测,感应电流的磁场,总是阻碍引起感应电流的磁通量(原磁场磁通量)的变化. (1)当原磁场磁通量增加时,感应电流的磁场方向与原磁场方向相反, (2)当原磁场磁通量减小时,感应电流的磁场方向与原磁场方向相同. 口诀记为“增反减同”.,一、“增反减同”法,知识探究,例1 如图1所示,一水平放置的矩形闭合线圈abcd在细长磁铁的N极附近竖直下落,保持bc边在纸外,ad边在纸内,由图中位置经过位置到位置,位置和位置都很接近位
2、置,这个过程中线圈的感应电流 ( ) A.沿abcd流动 B.沿dcba流动 C.先沿abcd流动,后沿dcba流动 D.先沿dcba流动,后沿abcd流动,图1,解析 本题考查用楞次定律判断感应电流的方向,关键要分析清楚矩形线圈由位置到位置和由位置到位置两过程中,穿过线圈的磁感线方向相反.由条形磁铁的磁场可知,线圈在位置时穿过闭合线圈的磁通量最小,为零,线圈从位置到位置,从下向上穿过线圈的磁通量在减小,线圈从位置到位置,从上向下穿过线圈的磁通量在增加,根据楞次定律可知感应电流的方向是abcd. 答案 A,二、“来拒去留”法 导体与磁场相对运动产生电磁感应现象时,两者之间有力的作用,这种力的作
3、用会“阻碍”相对运动. 口诀记为“来拒去留”.,例2 如图2所示,当磁铁突然向铜环运动时,铜环的运动情况是( )A.向右摆动 B.向左摆动 C.静止 D.无法判定,图2,解析 本题可由两种方法来解决: 方法1:画出磁铁的磁感线分布,如图甲所示, 当磁铁向铜环运动时,穿过铜环的磁通量增加, 由楞次定律判断出铜环中的感应电流方向如图所 示.分析铜环受到安培力作用而运动时,可把铜环中的电流等效为多段直线电流元.取上、下两小段电流元作为研究对象,由左手定则确定两段电流元的受力,由此可推断出整个铜环所受合力方向向右,故A正确.,甲,方法2(等效法):磁铁向右运动,使铜环产生的感应电流可等效为图乙所示的条
4、形磁铁,两磁铁有排斥作用,故A正确.,乙,答案 A,三、“增缩减扩”法 当闭合电路中有感应电流产生时,电路的各部分导线就会受到安培力作用,会使电路的面积有变化(或有变化趋势). (1)若原磁通量增加,则通过减小有效面积起到阻碍的作用. (2)若原磁通量减小,则通过增大有效面积起到阻碍的作用. 口诀记为“增缩减扩”. 注意:本方法适用于磁感线单方向穿过闭合回路的情况.,例3 如图3所示,在载流直导线旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两可自由滑动的导体ab和cd.当载流直导线中的电流逐渐增强时,导体ab和cd的运动情况是 ( ) A.一起向左运动 B.一起向
5、右运动 C.ab和cd相向运动,相互靠近 D.ab和cd相背运动,相互远离,图3,解析 由于在闭合回路abcd中,ab和cd电流方向相反,所以两导体运动方向一定相反,排除A、B; 当载流直导线中的电流逐渐增强时,穿过闭合回路的磁通量增大,根据楞次定律,感应电流总是阻碍穿过回路磁通量的变化,所以两导体相互靠近,减小面积,达到阻碍磁通量增大的目的,故C正确,D错误. 答案 C,四、“增离减靠”法 发生电磁感应现象时,通过什么方式来“阻碍”原磁通量的变化要根据具体情况而定.可能是阻碍导体的相对运动,也可能是改变线圈的有效面积,还可能是通过远离或靠近变化的磁场源来阻碍原磁通量的变化.即:(1)若原磁通
6、量增加,则通过远离磁场源起到阻碍的作用.(2)若原磁通量减小,则通过靠近磁场源起到阻碍的作用. 口诀记为“增离减靠”.,例4 一长直铁芯上绕有一固定线圈M,铁芯右端与一木质圆柱密接,木质圆柱上套有一闭合金属环N,N可在木质圆柱上无摩擦移动,M连接在如图4所示的电路中,其中R为滑动变阻器,E1和E2为直流电源,S为单刀双掷开关,下列情况中,可观测到N向左运动的是 ( ),图4,A.在S断开的情况下,S向a闭合的瞬间 B.在S断开的情况下,S向b闭合的瞬间 C.在S已向a闭合的情况下,将R的滑片向c端移动时 D.在S已向a闭合的情况下,将R的滑片向d端移动时 解析 金属环N向左运动,说明穿过N的磁
7、通量在减小,说明线圈M中的电流在减小,只有选项C符合题意. 答案 C,五、安培定则、左手定则、右手定则、楞次定律的区别和应用 1.右手定则是楞次定律的特殊情况 (1)楞次定律的研究对象为整个闭合导体回路,适用于磁通量变化引起感应电流的各种情况. (2)右手定则的研究对象为闭合导体回路的一部分,适用于一段导线在磁场中做切割磁感线运动.,2.区别安培定则、左手定则、右手定则的关键是抓住因果关系 (1)因电而生磁(IB)安培定则.(判断电流周围磁感线的方向) (2)因动而生电(v、BI感)右手定则.(导体切割磁感线产生感应电流) (3)因电而受力(I、BF安)左手定则.(磁场对电流有作用力),例5
8、如图5所示,导轨间的磁场方向垂直于纸面向里.圆形金属环B正对线圈A,当导线MN在导轨上向右加速滑动时,下列说法正确的是 ( ),A.MN中电流方向NM,B被A吸引 B.MN中电流方向NM,B被A排斥 C.MN中电流方向MN,B被A吸引 D.MN中电流方向MN,B被A排斥,图5,解析 MN向右加速滑动,根据右手定则,MN中的电流方向从NM,且大小在逐渐变大,根据安培定则知,线圈A的磁场方向向左,且大小逐渐增强,根据楞次定律知,B环中的感应电流产生的磁场方向向右,B被A排斥,B正确,A、C、D错误. 答案 B,1,2,3,4,自我检测,1.(“来拒去留”法)如图6所示,甲是闭合铜线框,乙是有缺口的
9、铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是( ),图6,A.三者同时落地 B.甲、乙同时落地,丙后落地 C.甲、丙同时落地,乙后落地 D.乙、丙同时落地,甲后落地 解析 在下落过程中,闭合铜线框中产生感应电流,由“来拒去留”可知,答案选D. 答案 D,1,2,3,4,1,2,3,4,2. (“增缩减扩”法及“来拒去留”法)如图7所示,水平桌面上放有一个闭合铝环,在铝环轴线上方有一个条形磁铁.当条形磁铁沿轴线竖直向下迅速移动时,下列判断正确的是 ( ),图7,A.铝环有收缩趋势,对桌面压力减小 B
10、.铝环有收缩趋势,对桌面压力增大 C.铝环有扩张趋势,对桌面压力减小 D.铝环有扩张趋势,对桌面压力增大,1,2,3,4,答案 B,解析 根据楞次定律可知:当条形磁铁沿轴线竖直向下迅速移动时,闭合铝环内的磁通量增大,因此铝环面积应有收缩的趋势,同时将远离磁铁,故增大了和桌面的挤压程度,从而使铝环对桌面压力增大,故B项正确.,1,2,3,4,3. (“增离减靠”法)如图8是某电磁冲击钻的原理图,若突然发现钻头M向右运动,则可能是( ),图8,A.开关S闭合瞬间 B.开关S由闭合到断开的瞬间 C.开关S已经是闭合的,滑动变阻器滑片P向左迅速滑动 D.开关S已经是闭合的,滑动变阻器滑片P向右迅速滑动
11、,1,2,3,4,解析 当开关突然闭合时,左线圈上有了电流,产生磁场,而对于右线圈来说,磁通量增加,产生感应电流,使钻头M向右运动,故A项正确; 当开关S已经是闭合时,只有左侧线圈电流增大才会导致钻头M向右运动,故C项正确. 答案 AC,1,2,3,4,4. (安培定则、左手定则、右手定则、楞次定律的 区别和应用)如图9所示,水平放置的两条光滑轨道 上有可自由移动的金属棒PQ、MN,当PQ在外力的 作用下运动时,MN在磁场力的作用下向右运动, 则PQ所做的运动可能是( ) A.向右加速运动 B.向左加速运动 C.向右减速运动 D.向左减速运动,图7,1,2,3,4,解析 当PQ向右运动时,用右手定则可判定PQ中感应电流的方向是由QP,由安培定则可知穿过L1的磁场方向是自下而上的;若PQ向右加速运动,则穿过L1的磁通量增加,用楞次定律可以判断流过MN的感应电流是从NM的,用左手定则可判定MN受到向左的安培力,将向左运动,可见选项A错误;,1,2,3,4,若PQ向右减速运动,流过MN的感应电流方向、MN所受的安培力的方向均将反向,MN向右运动,所以选项C正确; 同理可判断选项B正确,选项D错误. 答案 BC,