1、,第一课时,2.2.1椭圆的标准方程,如何精确地设计、制作、建造出现实生活中这些椭圆形的物件呢?,生活中的椭圆,一.问题情境,注意: 椭圆定义中容易遗漏的三处地方:(1) 必须在平面内.(2)两个定点-两点间距离确定(3)绳长-轨迹上任意点到两定点距离和确定 思考:在同样的绳长下,两定点间距离较长,则所画出的 椭圆较扁( 线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆( 圆) 由此可知,椭圆的形状与两定点间距离、绳长有关,1 椭圆定义:平面内与两个定点 的距离和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 ,二、复习回顾:,PF1+PF
2、2=2a (2a2c0, F1F2=2c),O,r,设圆上任意一点P(x,y),以圆心O为原点,建立直角坐标系,两边平方,得,2.学生活动, 回忆在必修2中是如何求圆的方程的?,2.学生活动:, 求动点轨迹方程的一般步骤:,(1)建立适当的坐标系,用有序实数对表示曲线 上任意一点M的坐标; (2)写出适合条件P的点M的集合;(可以省略, 直接列出曲线方程) (3)用坐标表示条件P(M),列出方程 (5)证明以化简后的方程的解为坐标的点都是 曲线上的点(可以省略不写,如有特殊情况,可以 适当予以说明),(4)化方程 为最简形式;,3.列等式,4.代坐标,坐标法,5.化简方程,1.建系,2.设坐标
3、,2.学生活动, 探讨建立平面直角坐标系的方案,建立平面直角坐标系通常遵循的原则:对称、“简洁”,方案一,解:取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系(如图).,设M(x, y)是椭圆上任意一 点,椭圆的焦距2c(c0),M 与F1和F2的距离的和等于正 常数2a (2a2c) ,则F1、F2的坐标分别是(c,0)、(c,0) .,3.建构数学,(问题:下面怎样化简?),由椭圆的定义得,限制条件:,代入坐标,1)椭圆的标准方程的推导,两边除以 得,由椭圆定义可知,总体印象:对称、简洁,“像”直线方程的截距式,焦点在y轴:,焦点在x轴:,2)椭圆的标准方
4、程,图 形,方 程,焦 点,F(c,0),F(0,c),a,b,c之间的关系,c2=a2-b2,MF1+MF2=2a (2a2c0),定 义,3)两类标准方程的对照表,注:,共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,中心在坐标原点的椭圆;方程的左边是平方和,右边是1.,不同点:焦点在x轴的椭圆 项分母较大.焦点在y轴的椭圆 项分母较大.,例1 : 已知一个运油车上的贮油罐横截面的外轮廓线是一 个椭圆,它的焦距为2.4m,外轮廓线上的点到两个焦点距离的和为3m,求这个椭圆的标准方程,解:,以两焦点F1、F2所在直线为x轴,线段F1F2的垂直平分线为 y 轴,建立如图所示的直角坐标系xOy
5、,则这个椭圆的标准 方程可设为,根据题意有,即,因此,这个椭圆的标准方程为,4.数学应用,练习:,1、 已知椭圆的方程为: ,请填空: (1) a=_,b=_,c=_,焦点坐标为_,焦距等于_. (2)若C为椭圆上一点,F1、F2分别为椭圆的左、右焦点,并且CF1=2,则CF2=_.,变题: 若椭圆的方程为 ,试口答完成(1).,若方程表示椭圆呢?,5,4,3,6,(-3,0)、(3,0),8,课堂练习:,1.口答:下列方程哪些表示椭圆?,若是,则判定其焦点在何轴? 并指明 ,写出焦点坐标.,?,解:,例2 :将圆 = 4上的点的横坐标保持不变, 纵坐标变为原来的一半,求所的曲线的方程, 并说
6、明它是什么曲线?,设所的曲线上任一点的坐标为(x,y),圆 上的对应点的坐标为(x,y),由题意可得:,因为 ,所以,即,1)将圆按照某个方向均匀地压缩(拉长),可以得到椭圆。 2)利用中间变量求点的轨迹方程 的方法是解析几何中常用的方法;,例3、写出适合下列条件的椭圆的标准方程,(1) a =4,b=1,焦点在 x 轴上;(2) a =4,b=1,焦点在坐标轴上;(3) 两个焦点的坐标是( 0 ,-2)和( 0 ,2),并且经过点P( -1.5 ,2.5).,解: 因为椭圆的焦点在y轴上,设它的标准方程为, c=2,且 c2= a2 - b2, 4= a2 - b2 ,又椭圆经过点, ,联立可求得:,椭圆的标准方程为,(法一),或,(法二) 因为椭圆的焦点在y轴上,所以设它的 标准方程为,由椭圆的定义知,,所以所求椭圆的标准方程为,5、回顾小结,6、作业布置,求椭圆标准方程的方法,求美意识, 求简意识,前瞻意识,