1、 36 11 S Vol.36 No.11 Jun. 5, 2016 3062 2016 M 6 5 Proceedings of the CSEE 2016 Chin.Soc.for Elec.Eng. DOI 10.13334/j.0258-8013.pcsee.2016.11.023 cI| 0258-8013 (2016) 11-3062-08 ms | TM 351 PCB F TH s Z T k (?v 1? g 2 7 u 300072) Thermal Analysis and Cooling Approach Design of Axial Flux Permanent M
2、agnet Synchronous Machines With PCB Winding WANG Xiaoyuan, ZHOU Chen (College of Electrical Engineering and Automation, Tianjin University, Nankai District, Tianjin 300072, China) ABSTRACT: An axial flux coreless machine actually has little volume and high power density. For an axial flux permanent
3、magnet synchronous machine (PMSM) with a printed circuit board (PCB) stator winding, the temperature has great influence on the performance of the permanent magnet and FR-4, which is the material of PCB. An axial flux PMSM with PCB winding was studied. According to the heat transfer theory, a three-
4、dimension temperature field model was established. The finite element method (FEM) was used for the analysis and calculation of the temperature field. Heating and temperature of each component was studied. A prototype machine was manufactured and experiments were conducted to test the thermal perfor
5、mance. The impact of increasing the contact area between the frame and the PCB stator on the temperature field was analyzed and the temperature rise was optimized, which could provide some reference for the research on the cooling approach. KEY WORDS: axial flux machine; printed circuit board (PCB)
6、winding; losses; finite element method; temperature field K1 TMY81 l q b0F (printed circuit board PCB) TMH 6Y“ PCB H8 ?b PCB F TMH . y 9 bKE _s? #q f b YV L 1 y 9 T bKYV9v T PCB 0( M 6 PCB F T Z T4 Bt IG b 1oM T (PCB) F KE 0 T.d T_HY _HYbTBC ? v z8la q var qi O08 l 1v T 5 B1-2b (printed circuit boar
7、d PCB) F TMH0 F N+ ?vvh h“M P_ bWFXL B4r q3-5b7 O PCB FR-4“ v b 9 F b.d_M1 T l Hq vs 1 L T _6bi O “ 9va q 149F8 PT Hq 6b PCB F T T0 F 6VV PCB 0 K PCB F 7/ T0s 6VMH ? . V I|HYr qa P p # V L8b PCB F TMH 0H8 H H 0 FL PCB FR-4%0MM9yN !9N T 11 k PCB F THs Z T 3063 M 65 C I nb “ -S= TMH1 +Y PCB F T6 C 6 B
8、115 1“ P p V Lb B4 q V L 69 Z T TMH !911b PCB F TH+y 9 b . aqV W. Z T “ KE / FsY 9 FK FR-4b YV“ L 1s pZE #9 T bK_s “ 2 600 r/min F 17 A/mm2HsN H FKX0 K 130 b 6YV a9v T PCB0( P PCB FK /B 6 T !94 B IG L=Nb 1 T 9 1.1 “0010b0s 32 v %0M H890Halbach11 F12 8b PCB F) 0 Wb“ m 1 Ub 1 2 3 4 5 6 7 8 1i FL 2iPCB
9、0 3i 4i 5i T 6i % d 7iH8 8iMb m 1 “ Uim Fig. 1 Structure diagram of the machine PCB0 F !9 M PCB8 b“1 !9 V 1 Ub 1.2 9 . PCB F V 1 Tab. 1 Basic parameters of the prototype machine H /mm 6 L 12 M /mm 5 L 8 0 /mm 45 PCB /mm 72 0 = /mm 26 H z /mm 0.8 # /mm 5 H /mm 0.1414PCB /mm 1.6 HW /mm 0.3 T .Z13-14 1
10、2222222e0()xyzSSTTT TKKKqcTKnTKTTn (1) T T KxaKyaKzsY p = xayaz Z_ “ W/(m) q p = 8 W/m3 c 1 Ws/(kg) kg/m3 HW sbS1 H S2 H Te S2 S2 “ W/( m2) KS1 S2E_ .“ b 1.3 p#HHq H Hq/ T_ ZL9 _ iBH8H | 2S_ |_T p u m 2 Ub9 PCB0 Faa0# Tbm 3 U0 PCB09 b p =S /L !150V a MPCB0H8 TS1S2m 2 p Fig. 2 Solving domain model of
11、 temperature field 3064 S 36 m 3 0 PCB0 Fig. 3 Model of rotor and PCB stator PCB0V AT ( “ (| ( I n“ =sY I nM F “r #rY I nMEYb pHHq) 16m 2_ S1j PCB _ a T_ 0_ 2 HHq S2j T =V 0V 3 HHqb 2 T? s .1 3Z T .a # b PCB F TH0 F 3 BsYV PCB. PCBV Z TYV #.00YV | 6BsYV PCB. PCB ( TYV TV b bV . . 1Tb 2.1 s s$9 4r q1
12、ob9 Y 69 17b PCB F Ty + yMiM #Hos l H8 V byN1 PCB F 3aMH0 F #0 b2.1.1 0 F H 3 0 F 3 Y1y b M FL L ( s59 F18 VV U 2Cu3P IR (2) T I FM R M FEb 2.1.2 F TH PCB F) HWMMH F = 3 b PCB F F 19VV U 222 2 2 2econmt1mt1d()3PfamBB (3) T q 8 a8 z mcon F8 Bmt1 Bma1sY M_oH dH oM“ b 2.1.3 T 1O 0V b b O 20VV U 5f0.15
13、10FPvd (4) T F dO0 ) vO0 b 0V b 21VV U 34fP kC r l (5) T k 0V Y“ ;0V k=1 Cf b “ 0V g M 1 b r lsY0 a0#0b 2.2 “ “ y 1 8a 8 # 9 “iB 4b “ -E 9 B*9 V “ Tb 2.2.1 0W . “ # b 07 Pa0W .1 . “ 49 VYV00V Wy r9 br . “ vl1a0 # %22 VV U Nug (6) T r . “ Nu m : b “ g #b m : Nu Ta + Pr1 V/ 1“ T229 11 k PCB F THs Z T
14、3065 0.63 0.270.5 0.272, 410.212 , 41 1000.386 , 100TaNu Ta Pr TaTa Pr Ta(7) T Ta + Pr9 / /Ta gvugR (8) /Pruc (9) T v0V u b *“ R0 b c b 1 b 2600 r/min H 0V Wr . “ 47.45 W/(m2)b 2.2.2 0 T =V W . “ 0 T =V W b 07 i “ VYV0 T =V Wy T (6)i(9) r9 . “ b 2 600 r/min H 0V T_ PMSM 9 s J/ 200722(10) 6-11 Jiang
15、Shanlin Zou Jibin Zhang Hongliang Numerical calculation and analysis of 3D transient temperature field in tractive PMSM for elevatorJ Transactions of CHINA Electrotechnical Society200722(10)6-11(in Chinese) 17 f/ Zm 5x_ H 69 JS 201434(12) 1874-1881 Zhang Qi Lu Xirui Huang Surong et al Temperature ri
16、se calculations of high density permanent magnet motors based on multi-domain co-simulationJ Proceedings of the CSEE 2014 34(12) 1874-1881(in Chinese) 18 = p 3DKEH s Jq 201232(2)40-44 Ye Xuerong Su Bonan You Jiaxin et al Analysis of three-dimensional steady temperature field of permanent magnet DC m
17、otor based on finite element method JElectromechanical Components201232(2)40-44(in Chinese) 19 l BM w T !9sD 2012 Wang Xiaolei Design and analysis of Axial Flux Permanent Magnet Machine with a new type coreless armatureD Xian Xian Institute of Precision Mechanics 2012(in Chinese) 20 W !9 M 2S ThermN
18、et MagNet s J 2009 42(6) 14-17 Yang Jinxia Liu Weiguo Analysis of the thermal field of brushless motor based onThermNet and MagNet J Micromotors 2009 42(6) 14-17(in Chinese) 24 EE # 9 J 2008 12(3) 12-14 Xie Xiujie The principle and mathematics calculation of resistance test methods for temperature measurement JTheory and Research200812(3)12-14(in Chinese) l 2015-03-20b Te k (1962) 3 qp V 3 = Z_Hs9 a+ y !9 e (1991) 3 V 3 Z_ T !9# PCB F s b k (3 I )